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Introduction

Monadic second order logic (MSO logic, [Büc60, Don70, TW68]) is a way to describe properties
of graphs. In this paper we will focus on strings and trees as special cases. Monadic second order
logic combines great strength with great ease of expression. Closed MSO formulas define sets of
trees, while MSO formulas with one or more unbound variables define node relations on trees.
One perhaps less desirable property of MSO logic is that its formulas are global in a way that
they define properties of trees as a whole. Another way to define node relations is by tree-walking
automata. A tree-walking automaton can compute a binary node relation by starting on one node
of the tree and finishing on another node. It has already been shown that tree-walking automata
that can test unary MSO formulas at each node they visit, compute the same node relations that
binary MSO formulas define [BE97]. However, these unary MSO formulas define in a way also
global properties of the tree, in that they can test, e.g., the labels of several nodes of the tree they
walk on in one formula. It can also be shown that ordinary tree-walking automata do not compute
the same node relations that binary MSO formulas recognize. Therefore, in order to compute the
node relations defined by binary MSO formulas, we need to extend tree-walking automata with
features that make them more powerful. We need to make sure that these features result in only
local operations, i.e., the resulting automata can, during their walk on a tree, only test properties of
the current node. Also, we would like these operations to be more operational and less descriptive
than unary MSO formulas. These considerations lead us to the central question of this paper.

Is it possible to define a type of tree-walking automaton, with only local operations,
that computes the same binary node relations that binary MSO formulas recognize?

In this paper, we try to find an answer to this question. We start by attempting to find an answer
for strings in Chapter 1. In this chapter, we introduce the concept of pebbles. During the walk of
a string- or tree-walking automaton, the automaton can place a pebble on the current node. Later
during its walk, the automaton can check for the presence of a pebble and pick it up. Variations
are possible in the allowed number of pebbles, coloured pebbles and restriction in the use of
pebbles. It is shown that string-walking pebble automata (with just one pebble) compute exactly
the binary relations that binary MSO formulas define on strings. In the next chapter, we define
some more powerful string-walking automata and show some of their properties. In Chapter 3, we
move on to trees. The task of finding a proper extension for tree-walking automata proves to be a
bit harder than for string-walking automata. Because it is already known [KS81] that push-down
tree-walking automata recognize exactly the regular tree languages (which are the tree languages
defined by closed MSO formulas), we develop tree-walking marble automata, similar in concept
to push-down tree-walking automata, that also recognize exactly the regular tree languages but,
unlike push-down tree-walking automata, allow for a natural definition of the computation of node
relations. By adding one pebble, we obtain tree-walking marble/pebble automata. We show that
these compute exactly the binary node relations that binary MSO formulas define on trees. In the
last chapter, we conclude this paper and give some recommendations for future research.
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Chapter 1

Binary MSO Formulas and
String-Walking Pebble Automata

1.1 Preliminaries

In this section we recall some well-known concepts from formal language theory [HU79, RHE91],
more specifically concerning strings, finite automata and monadic second order logic (on strings).
Before doing so, we recall some standard terminology from set theory.

The set of natural numbers is N = {0, 1, 2, . . .} and, form,n ∈ N, [m,n] = {i ∈ N | m ≤ i ≤ n}. For
a set S, 2S is its powerset, i.e., the set of all subsets of S. Let R ⊆ A×B be a binary relation. The
transitive reflexive closure of R is denoted R∗. The inverse of R is R−1 = {(y, x) | (x, y) ∈ R}. For
two binary relationsR1 andR2, their composition isR1◦R2 = {(x, z) | ∃y : (x, y) ∈ R1 and (y, z) ∈
R2}. Note that the order of R1 and R2 is nonstandard. For each a ∈ A, R(a) = {b ∈ B | (a, b) ∈ R}
and for each S ⊆ A, R(S) =

⋃
{R(a) | a ∈ S}. The domain of R is dom(R) = R−1(B). A binary

relation R is functional if it is a partial function, i.e., (x, y), (x, z) ∈ R implies x = z.

Let f : A → B be a function; for any a and b, f(a 7→ b) denotes the “perturbed” function
f ′ : A ∪ {a} → B ∪ {b} with f ′(a) = b and f ′(a′) = f(a′) for every a′ ∈ A with a′ 6= a.

Strings

An alphabet is a finite set of symbols. Let Σ be an alphabet. A string over Σ is a finite string
of symbols from Σ. The empty string is denoted λ. The set of all strings over Σ is denoted Σ∗.
A subset of Σ∗ is called a language. If w is a string over Σ, |w| denotes the length of w. The
set of positions in w is denoted by Vw = [1, |w|]. For a string w ∈ Σ∗ and i ∈ Vw, we write
labw(i) = σ if the ith symbol of w is σ. For k ∈ N, a k-ary position relation over Σ is a subset of
{(w, u1, . . . , uk) | w ∈ Σ∗ and ui ∈ Vw for all i ∈ [1, k]}. A k-ary position relation associates with
each string w a k-ary relation on the positions of w.

We define marked strings as follows. Let Σ be an alphabet, and k ≥ 1. We define Bk = {0, 1}k \
{0}k. The alphabet Σ ∪ (Σ×Bk) contains all symbols σ ∈ Σ and the symbols (σ, b1, . . . , bk) with
bi ∈ {0, 1} for all i ∈ [1, k], but without (σ, 0, . . . , 0). The role of the latter symbol is played
by σ itself. This alphabet is used to attach k different marks to the positions in a string. Let
w ∈ Σ∗ be a string over Σ, and let u1, . . . , uk ∈ Vw. The marked string w′ = mark(w, u1, . . . , uk) ∈
(Σ ∪ (Σ×Bk))∗ is the string with labw′(u) = labw(u) if u 6= ui for all i ∈ [1, k], and labw′(u) =
(labw(u), (u = u1), . . . , (u = uk)) otherwise (where (u = ui) = 1 iff u equals ui).
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Finite Automata

Let Σ be an alphabet. A finite automaton over Σ is a quintuple M = (Q,Σ, δ, I, F ), where Q is a
finite set of states, Σ is the input alphabet, δ ⊆ Q×Σ×Q is the transition relation, I ⊆ Q is the set
of initial states and F ⊆ Q is the set of final states. The elements of δ are called transitions. For
every string w ∈ Σ∗, the state transition relation RM (w) ⊆ Q×Q is defined as follows. For σ ∈ Σ,
RM (σ) = {(p, q) | (p, σ, q) ∈ δ}. For σ1, . . . , σn ∈ Σ, RM (σ1 · · ·σn) = RM (σ1) ◦ · · · ◦RM (σn). The
language recognized by M is L(M) = {w ∈ Σ∗ | (qin, qfin) ∈ RM (w) for some qin ∈ I, qfin ∈ F}. A
language is regular if it is recognized by a finite automaton. The class of all regular languages is
named REG.

Monadic Second Order Logic (on strings)

Monadic second order logic can be used to describe properties of strings [Büc60]. For an alphabet
Σ, we define the language MSOL(Σ) of MSO formulas over Σ. This language has position variables
x, y, . . . and position-set variables X,Y, . . .. For a given string w ∈ Σ∗, position variables range
over Vw = [1, |w|] and position-set variables range over the subsets of Vw.

There are three types of atomic formulas in MSOL(Σ): labσ(x), for every σ ∈ Σ, signifies that
at position x there is a symbol σ. When MSO logic is expanded to describe properties of trees
and graphs, labσ(x) means that node x is labeled σ, hence the name labσ. The atomic formula
pre(x, y) signifies that position x comes directly before y, i.e. y = x+ 1; and x ∈ X signifies that
x is an element of X. The connectives used to build formulas from these atomic formulas are
¬,∧,∨,→,↔, with the usual meaning. Both position variables and position-set variables can be
quantified with ∃ and ∀. We will make use of the following abbreviations of MSO formulas:

head(x) = ∀y (¬pre(y, x))
tail(x) = ∀y (¬pre(x, y))

true(x) = ∃X (x ∈ X)
false(x) = ¬true(x)

If an MSO formula φ has free variables, say x, y,X and no others, we write φ(x, y,X) to indicate the
free variables of φ. For every k ∈ N, the set of MSO formulas over Σ with k free position variables
and no free position-set variables is denoted MSOLk(Σ), or the set of k-ary MSO formulas. For a
closed formula φ ∈ MSOL0(Σ) and a string w ∈ Σ∗, we write w |= φ if w satisfies φ. The language
defined by φ is L(φ) = {w ∈ Σ∗ | w |= φ}. L(φ) is called an MSO definable language. The class
of all MSO definable languages is named MSO.

Given a string w, a valuation function ν is a function that maps each position variable to a
position u ∈ Vw and each position-set variable to a subset U of Vw. Let φ be an MSO formula.
We write (w, ν) |= φ, if φ holds in w, where the free variables of φ are assigned values according
to the valuation function ν. If φ has free variables x, y,X, we write (w, u, v, U) |= φ(x, y,X) for
(w, ν) |= φ, where ν(x) = u, ν(y) = v and ν(X) = U .

Let φ(x1, . . . , xk) ∈ MSOLk(Σ) be an MSO formula with k free positions variables (and no free
position-set variables). For each string w ∈ Σ∗, the k-ary relation that φ defines on the positions
of w is

Rw(φ) = {(u1, . . . , uk) ∈ V kw | (w, u1, . . . , uk) |= φ(x1, . . . , xk)}.
The MSO formula φ(x1, . . . , xk) defines the position relation

R(φ) = {(w, u1, . . . , uk) | w ∈ Σ∗, (u1, . . . , uk) ∈ Rw(φ)}.

Büchi [Büc60] proved the following classical result.
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Proposition 1 A language is MSO definable if and only if it is regular.

In [BE97], the following (well-known) results are proven for MSO formulas on trees. They also
hold for the special case of strings. Corollary 3 is the result of Lemma 2 in the case j = k.

Lemma 2 Let Σ be an alphabet, k ≥ 1, and j ∈ [1, k]. For every formula φ(x1, . . . , xk) ∈
MSOLk(Σ) there is a formula ψ(xj+1, . . . , xk) ∈ MSOLk−j(Σ ∪ (Σ×Bj)) such that, for all w ∈ Σ∗

and u1, . . . , uk ∈ Vw,

(w, u1, . . . , uk) |= φ(x1, . . . , xk) iff (mark(w, u1, . . . , uj), uj+1, . . . , uk) |= ψ(xj+1, . . . , xk),

and vice versa, i.e., for every formula ψ(xj+1, . . . , xk) ∈ MSOLk−j(Σ ∪ (Σ×Bj)) there is a
formula φ(x1, . . . , xk) ∈ MSOLk(Σ) such that the above equivalence holds for all w ∈ Σ∗ and
u1, . . . , uk ∈ Vw.

Corollary 3 Let Σ be an alphabet and k ≥ 1. For every formula φ(x1, . . . , xk) ∈ MSOLk(Σ) there
is a formula ψ ∈ MSOL0(Σ ∪ (Σ×Bk)) such that, for all w ∈ Σ∗ and u1, . . . , uk ∈ Vw,

(w, u1, . . . , uk) |= φ(x1, . . . , xk) iff mark(w, u1, . . . , uk) |= ψ,

and vice versa, i.e., for every MSO formula ψ ∈ MSOL0(Σ ∪ (Σ×Bk)) there is a formula
φ(x1, . . . , xk) ∈ MSOLk(Σ) such that the above equivalence holds for all w ∈ Σ∗ and u1, . . . , uk ∈
Vw.

From Corollary 3 and Proposition 1 follows the following lemma.

Lemma 4 Let Σ be an alphabet and let k ≥ 1. For every MSO formula φ(x1, . . . , xk) ∈ MSOLk(Σ)
there exists a finite automaton M over Σ ∪ (Σ×Bk) such that, for all w ∈ Σ∗ and u1, . . . , uk ∈ Vw,

(w, u1, . . . , uk) |= φ(x1, . . . , xk) iff mark(w, u1, . . . , uk) ∈ L(M).

1.2 String-Walking Automata

String-walking automata are known in the literature as two-way finite automata (see [HU79,
Section 2.6]). We will call them string-walking automata to stress both the differences and the
similarities with tree-walking automata. String-walking automata are like the well-known finite
automata, except that they can walk both forwards and backwards along the string they are
examining (hence the name two-way finite automata). At any moment in the execution of a
string-walking automaton, the automaton is in one state and at one position of the string. Let
Σ be an alphabet. Syntactically, a string-walking automaton over Σ is a finite automaton with a
special set of directives as input alphabet. We define the set of directives as

DSWA(Σ) = {←,→, head,¬head, tail,¬tail} ∪ {labσ | σ ∈ Σ} .

The meaning of the directives is as follows:

• ← means go back to the previous position in the input string.

• → means go to the next position in the input string.

• head checks whether the current position is the first position in the string.

• tail checks whether the current position is the last position in the string.
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• ¬head and ¬tail are the negations of head and tail respectively.

• labσ checks whether the current position is labeled with σ.

Formally, we define for each string w ∈ Σ∗ and each directive d ∈ DSWA(Σ) the following binary
relation Rw(d) on Vw:

Rw(←) = {(i, i− 1) | 1 < i ≤ |w|}
Rw(→) = {(i, i+ 1) | 1 ≤ i < |w|}

Rw(labσ) = {(i, i) | 1 ≤ i ≤ |w| and the ith symbol of w is σ}
Rw(head) = {(1, 1)}

Rw(¬head) = {(i, i) | 1 < i ≤ |w|}
Rw(tail) = {(n, n) | n = |w|}

Rw(¬tail) = {(i, i) | 1 ≤ i < |w|}

A string-walking automaton over Σ is a finite automaton A over DSWA(Σ). For a string-walking
automaton A = (Q,DSWA(Σ), δ, I, F ) and a string w ∈ Σ∗, an element (q, u) of Q × Vw is a
configuration of the automaton. The configuration (q, u) ∈ Q × Vw signifies that A is in state
q at position u. We say that the current position of the automaton on w is u. The set of all
configurations of A and w is denoted by CA,w.

Let w ∈ Σ∗. One step of A = (Q,DSWA(Σ), δ, I, F ) on w is defined by the binary relation �A,w

on the set of configurations, as follows. For every (q, u), (q′, u′) ∈ CA,w,

(q, u)�A,w(q′, u′) iff ∃d ∈ DSWA(Σ) : (q, d, q′) ∈ δ and (u, u′) ∈ Rw(d).

For each string w ∈ Σ∗, A computes the binary relation

Rw(A) =
{

(u, v) ∈ Vw × Vw | (q, u)�∗A,w(q′, v) for some q ∈ I and q′ ∈ F
}
.

Thus, A computes the position relation

R(A) = {(w, u, v) | w ∈ Σ∗, (u, v) ∈ Rw(A)} .

We define the language that A recognizes as all strings w with the property that there is a walk
of A on w starting at the beginning of the string in an initial state and ending in a final state, or

L(A) = {w ∈ Σ∗ | there exists v ∈ Vw such that (1, v) ∈ Rw(A)} .

The class of all languages recognized by a string-walking automaton is named SWA.

In the following we will also allow transitions of the form (p, s, q) with s ∈ DSWA(Σ)∗. If s =
d1d2 · · · dn, we define, for all w ∈ Σ∗,

Rw(s) = Rw(d1) ◦ · · · ◦Rw(dn).

These extended directives can easily be implemented by adding extra transitions and states.

A string-walking automaton A = (Q,DSWA(Σ), δ, I, F ) over Σ is deterministic if the following
three conditions hold:

1. #I = 1.

2. If (p, d, q) ∈ δ, then p 6∈ F .

3. For all distinct transitions (p, d1, q1), (p, d2, q2) ∈ δ, d1 and d2 are two mutually exclusive
directives in DSWA(Σ).
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Two directives d1, d2 ∈ DSWA(Σ) are mutually exclusive exactly if, for all w ∈ Σ∗ and u ∈ Vw,
dom(Rw(d1)) ∩ dom(Rw(d2)) = ∅. The following pairs of directives in DSWA(Σ) are mutually
exclusive:

• {→, tail}, {←, head}

• {head,¬head}, {tail,¬tail}

• {labσ1 , labσ2} with σ1 6= σ2

1.3 String-Walking Pebble Automata

We will extend the concept of string-walking automata with a pebble [BH65]. A string-walking
pebble automaton is able to drop its pebble at its current position in the string, pick it up at any
(later) time, if it is at the same position again, and check whether or not the pebble is present
at the automaton’s current position. Let Σ be an alphabet. The directives for a string-walking
pebble automaton are

DSWPA(Σ) = DSWA(Σ) ∪ {put, lift, here,¬here}
= {←,→, head,¬head, tail,¬tail, put, lift, here,¬here} ∪ {labσ | σ ∈ Σ}

The meaning of the new directives is as follows:

• put means drop the pebble at the current position in the string.

• lift means lift the pebble from the current position in the string (only if it is there now).

• here checks whether the pebble is at the current position.

• ¬here is the negation of here.

For all strings w ∈ Σ∗, we will denote the pebble positions with elements of Pw = Vw ∪{⊥}. Here
⊥ denotes that the pebble is not placed at any position of the string, i.e., the automaton “carries”
the pebble. We now need to extend the binary relations Rw(d) (for d ∈ DSWA(Σ)) to be on pairs
(u, p) ∈ Vw × Pw to take pebble-handling into account. Let, for all strings w ∈ Σ∗ and directives
d ∈ DSWA(Σ), R̃w(d) denote the binary relation Rw(d) as defined for string-walking automata in
the previous section. We now define Rw(d) for string-walking pebble automata as follows:

Rw(d) = {((i, p), (i′, p)) | (i, i′) ∈ R̃w(d) and p ∈ Pw}.

This means that the directives from DSWA(Σ) do not alter the pebble position.

The relations for the new directives are as follows.

Rw(put) = {((i,⊥), (i, i)) | 1 ≤ i ≤ |w|}
Rw(lift) = {((i, i), (i,⊥)) | 1 ≤ i ≤ |w|}
Rw(here) = {((i, i), (i, i)) | 1 ≤ i ≤ |w|}

Rw(¬here) = {((i, p), (i, p)) | 1 ≤ i ≤ |w| and p 6= i}

Let Σ be an alphabet. A string-walking pebble automaton is a finite automaton A over DSWPA(Σ).
For a string-walking pebble automaton A = (Q,DSWPA(Σ), δ, I, F ) and a string w ∈ Σ∗, an
element (q, u, p) ∈ Q× Vw × Pw is a configuration of the automaton. The set of all configurations
of A and w is denoted by CA,w. A configuration (q, u, p) signifies that A is in state q at position
u, while the pebble is at position p.
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The step relation �A,w is extended in the obvious way. For a string-walking pebble automaton
A, a string w ∈ Σ∗ and configurations (q, u, p), (q′, u′, p′) ∈ CA,w,

(q, u, p)�∗A,w(q′, u′, p′) iff ∃d ∈ DSWPA(Σ) : (q, d, q′) ∈ δ and ((u, p), (u′, p′)) ∈ Rw(d).

For the relation that A computes, we now demand that A begins and ends with the pebble not
on the string, or “in its pocket”. For w ∈ Σ∗,

Rw(A) =
{

(u, v) ∈ Vw × Vw | (q, u,⊥)�∗A,w(q′, v,⊥) for some q ∈ I and q′ ∈ F
}
.

The definitions of R(A) and L(A) remain the same. The class of all languages recognized by a
string-walking pebble automaton is named SWPA.

Transitions of the form (p, s, q) with s ∈ DSWPA(Σ)∗ are treated as with string-walking automata.
The definition of a deterministic string-walking pebble automaton is similar to that of a deter-
ministic string-walking automaton. The only difference is that the directives are now taken from
DSWPA(Σ). The following pairs of directives in DSWPA(Σ) are mutually exclusive:

• {→, tail}, {←, head}

• {here, put}, {lift,put}, {¬here, lift}

• {head,¬head}, {tail,¬tail}, {here,¬here}

• {labσ1 , labσ2} with σ1 6= σ2

1.4 String-Walking Automata with MSO Tests

Another way to extend string-walking automata (as done in [BE97] for tree-walking automata,
see also Section 3.7) is to allow the automaton to test any MSO definable property of the current
position of the string, using MSO formulas with one free position variable. This extension also
requires the introduction of new directives. Let Σ be an alphabet. The set of directives over Σ is

DSWA+M(Σ) = {←,→} ∪MSOL1(Σ).

Note that head, tail, labσ, etc. are MSO definable properties so they need not be explicitely stated
in the definition of DSWA+M(Σ). Note also that DSWA+M(Σ) is an infinite set. Therefore we need
to define for each string-walking automaton with MSO tests a finite subset of DSWA+M(Σ) as the
directives used by the automaton. For the directive d = ψ(x) with ψ ∈ MSOL1(Σ), we define the
following binary relation on Vw (w ∈ Σ∗):

Rw(ψ(x)) = {(i, i) | (w, i) |= ψ(x)}.

A string-walking automaton with MSO tests over Σ is a finite automaton A over a finite subset of
DSWA+M(Σ). The definitions of configurations, �A,w, Rw(A), etc. are unchanged with respect
to the definitions for (ordinary) string-walking automata. The definitions of deterministic string-
walking automata and mutually exclusive directives are also unchanged, although it is no longer
possible to list all mutually exclusive pairs of directives. Note that it is decidable whether a given
pair of directives in MSOL1(Σ) is mutually exclusive.

The class of all languages recognized by a string-walking automaton with MSO tests is named
SWA+M.

In [BE97] the following results are proven for trees. They also hold for the special case of strings.
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Proposition 5 The following three statements hold:

• SWA+M=REG

• For every alphabet Σ and every binary MSO formula φ(x, y) ∈ MSOL2(Σ), there exists a
string-walking automaton with MSO tests A such that R(A) = R(φ).

• For every alphabet Σ and every string-walking automaton with MSO tests A over Σ, there
exists a binary MSO formula φ(x, y) ∈ MSOL2(Σ) such that R(φ) = R(A).

1.5 From MSO Formulas to
String-Walking Pebble Automata

Both MSO formulas with two position variables and string-walking pebble automata compute
binary position relations. In this section, we show that every binary position relation that can
be defined by an MSO formula, can also be computed by a string-walking pebble automaton. In
Section 1.8 we will show that the reverse is also true, i.e., every binary position relation that can
be computed by a string-walking pebble automaton can also be defined by a binary MSO formula.

Let Σ be an alphabet and let φ(x, y) be a binary MSO formula over Σ. We have seen (Lemma 4)
that there exists a finite automaton M over Σ ∪ (Σ×B2) such that, for all w ∈ Σ∗ and u, v ∈ Vw,

(w, u, v) |= φ(x, y) iff mark(w, u, v) ∈ L(M).

The following lemma states that there is a string-walking pebble automaton that computes the
same relation as φ(x, y) defines.

Lemma 6 For every finite automaton M over Σ ∪ (Σ×B2) there exists a string-walking pebble
automaton A over Σ such that, for all w ∈ Σ∗ and u, v ∈ Vw,

mark(w, u, v) ∈ L(M) iff (u, v) ∈ Rw(A).

Proof. Let M = (QM ,Σ ∪ (Σ×B2), δM , IM , FM ) be a finite automaton over Σ ∪ (Σ×B2). We
will define a string-walking pebble automaton over Σ, A, that simulates M , using the pebble
to simulate the marked positions in M . A is defined as the (intuitive) union of three automata
A1, A2, A3. We define A as (Q1 ∪Q2 ∪Q3, DSWPA(Σ), δ1 ∪ δ2 ∪ δ3, I1 ∪ I2 ∪ I3, F1 ∪ F2 ∪ F3). A1
deals with the case that u comes “before” v in w, A2 deals with the case that v comes first and
A3 deals with the case u = v. For 1 ≤ i ≤ 3, Ai = (Qi, DSWPA(Σ), δi, Ii, Fi).

A1 simulates M , assuming that u comes before v in w. A1 first drops its pebble at the start
position u. This makes it possible to determine later where the automaton started. Then it walks
to the head of the string. Next it simulates M in three stages. In the first stage of the simulation,
it simulates M (only taking into account transitions of the form (p, σ, q) with σ ∈ Σ) until it finds
the pebble. It picks up the pebble and treats the symbol σ on this position as (σ, 1, 0) in M .
The automaton now continues simulating M (the second stage of the simulation), again without
transitions with labels in Σ×B2. Then, nondeterministically, A1 drops the pebble at some position
v and treats the symbol σ at this position as (σ, 0, 1) in M . A continues simulating M (the third
stage) until it reaches the end of the string. If it reaches the end of the string in a final state of
M , the choice for v was a good choice. The automaton then backs up until it finds the pebble at
position v. This ends A1.

We use the following states in A1.
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• in1 is the initial state.

• tobegin1 is used to walk to the head of the string.

• q1,i (for q ∈ QM ) is used in the ith stage of the simulation.

• backup1 is used to back up to v after the three stages of simulation.

• final1 is the final state.

Formally, A1 = (Q1, DSWPA(Σ), δ1, I1, F1) is constructed as follows:

Q1 = {in1, tobegin1, backup1,final1} ∪
{q1,i | q ∈ QM , 1 ≤ i ≤ 3}

δ1 = {(in1, put, tobegin1), (tobegin1,←, tobegin1)} ∪
{(tobegin1, head, q1,1) | q ∈ IM} ∪
{(p1,1, (labσ,→), q1,1) | (p, σ, q) ∈ δM} ∪
{(p1,1, (lift, labσ,→), q1,2) | (p, (σ, 1, 0), q) ∈ δM} ∪
{(p1,2, (labσ,→), q1,2) | (p, σ, q) ∈ δM} ∪
{(p1,2, (put, labσ,→), q1,3) | (p, (σ, 0, 1), q) ∈ δM} ∪
{(p1,2, (put, labσ, tail),backup1) | (p, (σ, 0, 1), qfin) ∈ δM for some qfin ∈ FM} ∪
{(p1,3, (labσ,→), q1,3) | (p, σ, q) ∈ δM} ∪
{(p1,3, (labσ, tail), backup1) | (p, σ, qfin) ∈ δM for some qfin ∈ FM} ∪
{(backup1,←,backup1), (backup1, lift, final1)}

I1 = {in1}
F1 = {final1}

A2 is similar to A1, only here the automaton, after dropping its pebble on u, first walks to the
right until the end of the string, then simulates M (inverted), starting in a state corresponding
to a state in FM , until it finds the pebble at u. It picks up the pebble and treats the symbol σ
at this position as (σ, 0, 1) in M . A2 continues with the second stage of the simulation. Then,
nondeterministically, A2 drops the pebble at some position v and continues with the third stage
of the simulation until the beginning of the string. If it reaches the beginning of the string in an
initial state of M , A2 walks back to the pebble at v and the simulation is finished.

Formally, A2 = (Q2, DSWPA(Σ), δ2, I2, F2) is constructed as follows:

Q2 = {in2, toend2, backup2,final2} ∪
{q2,i | q ∈ QM , 1 ≤ i ≤ 3}

δ2 = {(in2, put, toend2), (toend2,→, toend2)} ∪
{(toend2, tail, q2,1) | q ∈ FM} ∪
{(q2,1, (labσ,←), p2,1) | (p, σ, q) ∈ δM} ∪
{(q2,1, (lift, labσ,←), p2,2) | (p, (σ, 1, 0), q) ∈ δM} ∪
{(q2,2, (labσ,←), p2,2) | (p, σ, q) ∈ δM} ∪
{(q2,2, (put, labσ,←), p2,3) | (p, (σ, 0, 1), q) ∈ δM} ∪
{(q2,2, (put, labσ,head),backup2) | (p, (σ, 0, 1), qin) ∈ δM for some qin ∈ IM} ∪
{(q2,3, (labσ,←), p2,3) | (p, σ, q) ∈ δM} ∪
{(q2,3, (labσ, head), backup2) | (p, σ, qin) ∈ δM for some qin ∈ IM} ∪
{(backup2,→, backup2), (backup2, lift, final2)}

I2 = {in2}
F2 = {final2}
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A3 looks again like the previous two parts of A. A3 however assumes that u = v, which implies
that the only useful transitions with labels in Σ×B2 are the ones of the form (p, (σ, 1, 1), q) ∈ δM .
So A3 first drops its pebble at position u (= v), then (like A1) walks to the head of the string and
simulates M until it gets to the starting position (the pebble) again. It does not lift the pebble,
because it needs to know the position of u = v. A3 treats the symbol σ at this position as (σ, 1, 1)
in M . Then it continues with the second stage of the simulation of M until the end of the string.
If it arrives there in a final state of M , A3 backs up to the pebble which ends the simulation of
M .

Formally, A3 = (Q3, DSWPA(Σ), δ3, IA, FA) is constructed as follows:

Q3 = {in3, tobegin3, backup3, final3} ∪
{q3,i | q ∈ QM , 1 ≤ i ≤ 2}

δ3 = {(in3, put, tobegin3), (tobegin3,←, tobegin3)} ∪
{(tobegin3, head, q3,1) | q ∈ IM} ∪
{(p3,1, (labσ,→), q3,1) | (p, σ, q) ∈ δM} ∪
{(p3,1, (here, labσ,→), q3,2) | (p, (σ, 1, 1), q) ∈ δM} ∪
{(p3,1, (here, labσ, tail), backup3) | (p, (σ, 1, 1), qfin) ∈ δM for some qfin ∈ FM} ∪
{(p3,2, (labσ,→), q3,2) | (p, σ, q) ∈ δM} ∪
{(p3,2, (labσ, tail), backup3) | (p, σ, qfin) ∈ δM for some qfin ∈ FM} ∪
{(backup3,←, backup3), (backup3, lift,final3)}

I3 = {in3}
F3 = {final3}

�

Using this lemma the following theorem becomes trivial to prove.

Theorem 7 For each formula φ(x, y) ∈ MSOL2(Σ), there exists a string-walking pebble automa-
ton A over Σ such that R(φ) = R(A).

1.6 Another proof

There is another way to prove Theorem 7. This method makes use of Proposition 5 to simulate
the binary MSO formula by a string-walking automaton with MSO tests. The MSO tests are
then simulated by making use of a pebble. Let Σ be an alphabet, and let φ(x, y) ∈ MSOL2(Σ)
be an MSO formula with two free position variables. Then there exists a string-walking au-
tomaton with MSO tests A = (QA,∆A, δA, IA, FA) with ∆A a finite subset of DSWA+M(Σ)
such that R(φ) = R(A) (Proposition 5). We will construct a string-walking pebble automaton
A′ = (Q′, DSWPA(Σ), δ′, I ′, F ′) such that R(A′) = R(A) = R(φ). We need the following result,
which is Lemma 4 for the case k = 1.

Lemma 8 Let Σ be an alphabet. For every MSO test ψ(x) ∈ MSOL1(Σ), there exists a finite
automaton M over Σ ∪ (Σ×B1) such that, for all w ∈ Σ∗ and u ∈ Vw,

(w, u) |= ψ(x) iff mark(w, u) ∈ L(M).

We now construct A′. In first approximation, A′ equals A for transitions (p, d, q) with d ∈ {←,→}.
We define T = {(p, d, q) ∈ δA | d ∈ MSOL1(Σ)}, the collection of all transitions with MSO tests
in A. For each transition τ = (p, ψ(x), q) ∈ T , we use Lemma 8 to construct the finite automaton
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Mτ that calculates the MSO test ψ(x). We will use this automaton to construct a “subroutine”
in A′ that simulates τ . The idea is as follows, similar to the construction of A3 in the proof of
Lemma 6. A′ first drops its pebble. Then it walks to the head of the string. From there, it checks
the MSO test by following Mτ . Any transitions in δMτ with labels not in Σ are handled by using
the pebble. The only possible form of such a transition is (p, (σ, 1), q). In place of this transition,
we add transitions to check whether the position in the string where the automaton is now is
marked, i.e., the pebble is there. Then the symbol σ is checked and the automaton moves on to
the next position in the string in state q. If Mτ reaches a final state at the end of the string, A′

moves back to the position where it dropped the pebble and lifts it. At this moment the MSO
test ψ(x) is successfully verified by the automaton.

The following states are used for A′. First, all states from A, QA. Then we need extra states for
each MSO test. For all transitions τ ∈ T we use, next to the states of Mτ , tobeginτ to move to
the beginning of the string and backupτ to back up to the pebble, the place where the simulation
of Mτ started. We assume that all the Mτ for all τ ∈ T have unique states that do not overlap
with either QA or states of other Mτ ’s.

Formally, A′ = (Q′, DSWPA(Σ), δ′, I ′, F ′) is constructed as follows:

Q′ = QA ∪ {tobeginτ ,backupτ | τ ∈ T} ∪
⋃
τ∈T

QMτ

I ′ = IA

F ′ = FA

δ′ = {(p, d, q) ∈ δA | d ∈ {←,→}} ∪
⋃
{δτ | τ ∈ T}

Here the transitions needed to simulate τ = (p, ψ(x), q) are as follows:

δτ = {(p, put, tobeginτ ), (tobeginτ ,←, tobeginτ )} ∪
{(tobeginτ , head, sin) | sin ∈ IMτ } ∪
{s, (¬tail,¬here, labσ,→), t) | (s, σ, t) ∈ δMτ } ∪
{s, (¬tail,here, labσ,→), t) | (s, (σ, 1), t) ∈ δMτ } ∪
{s, (tail,¬here, labσ), backupτ ) | (s, σ, tfin) ∈ δMτ for some tfin ∈ FMτ } ∪
{s, (tail,here, labσ),backupτ ) | (s, (σ, 1), tfin) ∈ δMτ for some tfin ∈ FMτ } ∪
{(backupτ , (¬here,←), backupτ ), (backupτ , lift, q)}

1.7 Pebble Necessity

The following theorem states that we really need the pebble in Theorem 7. The proof of this
theorem is a simpler form of the proof for tree-walking automata (Theorem 15 in [BE97]). It is
included here for completeness.

Theorem 9 There exist an alphabet Σ and a formula φ(x, y) ∈ MSOL2(Σ) such that there is no
string-walking automaton A with R(A) = R(φ).

Proof. We construct an MSO formula φ(x, y) ∈ MSOL2(Σ) with Σ = {b, r}, denoting black
and red. For a string w over Σ, the binary relation R(φ) connects certain positions of w. If w
has exactly one position with symbol r, say vred, then R(φ) will connect any position to vred.
Otherwise, i.e., if there is no red symbol or more than one, R(φ) will connect any position to the
next in left-to-right circular order. We use the following abbreviations to define φ(x, y):

ors = ∃y (labr(y) ∧ ∀z (labr(z)→ z = y))
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succ(x, y) = pre(x, y) ∨ (tail(x) ∧ head(y))
φ(x, y) = (ors ∧ labr(y)) ∨ (¬ors ∧ succ(x, y))

Here ors is a closed MSO formula which is true if there is exactly one red symbol in w, and
succ(x, y) is an MSO formula which is true if y follows x in left-to-right circular order. Clearly,
φ(x, y) is a binary MSO formula with R(φ) as indicated above.

Now we will show that there is no string-walking automaton A = (Q,DSWA(Σ), δ, I, F ) with
R(A) = R(φ). Suppose that such an A exists. We may assume that I = {qin}. The idea is that
when A starts at any position u of a string with only b’s, it first has to visit all positionsc of the
string to check there is no r in the string. Because there is no way for A to remember its starting
point u, A also cannot find the position after u in left-to-right circular order.

Let w be b#Q+1, a string of #Q+ 1 black symbols. Let w′ be rb#Q. Thus, w′ is w with the first
symbol changed to red. We will use the following function:

succ(k) =
{
k + 1 if k ≤ #Q
1 otherwise (k = #Q+ 1)

which gives the successor to position k in left-to-right circular order. Because w does not contain
a symbol r, there exists for every k ∈ [1,#Q+ 1] a state fk ∈ F such that

(qin, k)�∗A,w(fk, succ(k)).

On the other hand, because w′ contains exactly one symbol r, for all k ∈ [1,#Q], there is no state
f ∈ F such that

(qin, k)�∗A,w′(f, succ(k)).

This difference implies that for all k ∈ [1,#Q] the walk of A on w from k to succ(k) must visit
position 1, because the only different symbol is the first, which is black for w and red for w′.
Because the walk of A on w from #Q+ 1 to 1 also visits position 1, there is for all k ∈ [1,#Q+ 1]
a qk ∈ Q such that

(qin, k)�∗A,w(qk, 1)�∗A,w(fk, succ(k)).

There are #Q+ 1 possibilities for k and only #Q states, which means there are k, k′ ∈ [1,#Q+ 1]
with k 6= k′ and qk = qk′ . Then

(qin, k)�∗A,w(qk, 1) = (qk′ , 1)�∗A,w(fk′ , succ(k′)).

This implies that A walks from k both to succ(k) and to succ(k′) with k 6= k′, a contradiction to
the fact that R(A) = R(φ). �

1.8 From String-Walking Pebble Automata to
MSO Formulas

In this section we will prove that a string-walking pebble automaton can be simulated by a
string-walking automaton with MSO tests. Because it is already known that these automata can
be simulated by binary MSO formulas (Proposition 5), and because we have shown in previous
sections that a binary MSO formula can be simulated by a string-walking pebble automaton, we
obtain the equivalence of binary MSO formulas and string-walking pebble automata.

To prove that it is possible to simulate the use of a pebble with MSO tests, we will need the
following lemma. In the lemma, A is a string-walking pebble automaton that is not allowed to
move its pebble, but it is allowed to check the presence of the pebble at the current position. The
lemma states that the round-trip of A from the position where the pebble is, back to that position
can be simulated by a unary MSO formula.
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Lemma 10 Let A be a string-walking pebble automaton, with no transitions with directives put or
lift, over Σ. Then, for every pair of states p, q ∈ QA, there exists a formula ψpq(x) ∈ MSOL1(Σ)
such that, for all w ∈ Σ∗ and x ∈ Vw,

(p, x, x)�∗A,w(q, x, x) iff (w, x) |= ψpq(x).

Proof. Let A be a string-walking pebble automaton over Σ without put and lift. Let p, q ∈ QA.
First note that the pebble does not move during A’s walk. We can therefore consider the pebble
position a constant and mark it using a special symbol (σ, 1) where σ is the original symbol
at the pebble position. We will now define a string-walking automaton A′ (without pebble)
over Σ ∪ (Σ×B1) that simulates the walk of A from the pebble position and back. We define
A′ = (QA, DSWA(Σ ∪ (Σ×B1)), δ′, {p}, {q}). Thus, the states of A′ are the same as those of A,
A′’s initial state is p, and its final state is q. Furthermore, δ′ consists of the following transitions:

δ′ = δA ∩ (QA ×DSWA(Σ)×QA) ∪
{(s, lab(σ,1), t) | (s, here, t) ∈ δA, σ ∈ Σ} ∪
{(s, labσ, t) | (s,¬here, t) ∈ δA, σ ∈ Σ} ∪
{(s, lab(σ,1), t) | (s, labσ, t) ∈ δA, σ ∈ Σ}.

The directive “here” is simulated by checking whether the symbol at the current position is in
Σ × B1. Similarly, “¬here” is simulated by checking whether the symbol at the current position
is in Σ. Otherwise, the new symbols from Σ×B1 are treated just like the corresponding symbols
from Σ. Now, for all s, t ∈ QA, w ∈ Σ∗ and x, y, z ∈ Vw, it is easy to see that

(s, x, z)�∗A,w(t, y, z) iff (s, x)�∗A′,w′(t, y)

where w′ = mark(w, z). This means that A′ on a string marked at position z walking from x to y
simulates A on the unmarked string with the pebble at position z. Both automata start in state
s and end in state t. Also, from the definition of Rw′(A′),

(p, x)�∗A′,w′(q, y) iff (x, y) ∈ Rw′(A′).

According to Proposition 5 we can construct a formula φ′pq(x, y) ∈ MSOL2(Σ ∪ (Σ×B1)) that
simulates the walk of A′ on a marked string, so that, for all w ∈ Σ∗, x, y, z ∈ Vw and w′ =
mark(w, z),

(x, y) ∈ Rw′(A′) iff (w′, x, y) |= φ′pq(x, y).

Using Lemma 2 yields a formula φpq(x, y, z) ∈ MSOL3(Σ) such that, for all w ∈ Σ∗ and x, y, z ∈
Vw,

(mark(w, z), x, y) |= φ′pq(x, y) iff (w, x, y, z) |= φpq(x, y, z).

We now define ψpq(x) = φpq(x, x, x) ∈ MSOL1(Σ). Then, for all w ∈ Σ∗ and u ∈ Vw,

(p, x, x)�∗A,w(q, x, x) iff (w, x) |= ψpq(x).

�

Theorem 11 For every string-walking pebble automaton A there exists a string-walking automa-
ton with MSO tests A′ such that R(A) = R(A′).

Proof. When A drops its pebble at some position u of string w, it must return there some later
time to pick it up, because of the definition of Rw(A). In the mean time, i.e., until A returns to
u, A does not move its pebble. By using Lemma 10, the actions of this automaton until its arrival
in u can be simulated by a single MSO test. The details are as follows.
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Let A = (Q,DSWPA(Σ), δ, I, F ) be a string-walking pebble automaton over Σ. We will define
a string-walking automaton with MSO tests A′. The MSO tests ψpq are obtained by applying
Lemma 10 to the automaton derived from A by removing all transitions of the form (p, d, q) with
d ∈ {put, lift}. We define A′ = (Q,∆, δ′, I, F ) with

∆ = {←,→, true(x), head(x), tail(x),¬head(x),¬tail(x)} ∪
{labσ(x) | σ ∈ Σ} ∪ {ψpq(x) | p, q ∈ Q}

δ′ = {(p, d, q) ∈ δ | d ∈ {←,→}} ∪
{(p, head(x), q) | (p, head, q) ∈ δ} ∪
{(p,¬head(x), q) | (p,¬head, q) ∈ δ} ∪
{(p, tail(x), q) | (p, tail, q) ∈ δ} ∪
{(p,¬tail(x), q) | (p,¬tail, q) ∈ δ} ∪
{(p, labσ(x), q) | (p, labσ, q) ∈ δ} ∪
{(p, true(x), q) | (p,¬here, q) ∈ δ} ∪
{(p, ψqr(x), s) | (p, put, q) ∈ δ and (r, lift, s) ∈ δ}

The directives←,→, head, ¬head, tail, ¬tail and labσ (for σ ∈ Σ) are simulated straightforwardly.
The MSO test ψqr(x) simulates the actions of A between the put and the lift. �

This theorem leads us to the grand finale of this chapter.

Theorem 12 The following two statements hold:

• For every MSO formula φ(x, y) ∈ MSOL2(Σ) there exists a string-walking pebble automaton
A over Σ such that R(A) = R(φ).

• For every string-walking pebble automaton A over Σ there exists an MSO formula φ(x, y) ∈
MSOL2(Σ) such that R(φ) = R(A).

There is another way to prove that any string-walking pebble automaton can be simulated by an
MSO formula with two position variables. Let A be a string-walking pebble automaton over Σ
that recognizes the relation R(A). Then a string-walking pebble automaton A′ over Σ ∪ (Σ×B2)
can easily be constructed such that (w, u, v) ∈ R(A) just if mark(w, u, v) ∈ L(A′). A′ walks right
until it encounters a symbol (σ, 1, x) with x ∈ {0, 1}. Then A′ starts simulating A directly until
it encounters a symbol (σ, y, 1) with y ∈ {0, 1} in a final state. Because SWPA=REG [BH65] and
REG=MSO (Proposition 1), there exists an MSO formula ψ ∈ MSOL0(Σ ∪ (Σ×B2)) such that
L(A′) = L(ψ). Using Corollary 3, we obtain an MSO formula φ(x, y) ∈ MSOL2(Σ) such that, for
all w ∈ Σ∗, mark(w, u, v) ∈ L(ψ) just if (w, u, v) |= φ(x, y).

Note that we can also use Theorem 12 to derive that SWPA = REG, as follows:

Theorem 13 SWPA = REG

Proof. First we will show that any language defined by a string-walking pebble automaton is MSO
definable and hence regular. Let A be a string-walking pebble automaton over Σ. By definition,
the language recognized by A is

L(A) = {w ∈ Σ∗ | there exists v ∈ Vw such that (1, v) ∈ Rw(A)} .

Using the second part of Theorem 12 we obtain a formula φ(x, y) ∈ MSOL2(Σ) such that, for all
w ∈ Σ∗ and u, v ∈ Vw,

(u, v) ∈ Rw(A) iff (w, u, v) |= φ(x, y).
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We now define
ψ = ∀x(∃y(head(x)→ φ(x, y)))

to obtain that, for all w ∈ Σ∗ and v ∈ Vw,

∃v ∈ Vw((1, v) ∈ Rw(A)) iff ∃v ∈ Vw((w, 1, v) |= φ(x, y)) iff w |= ψ

so
L(A) = L(ψ)

and, since MSO=REG, L(A) is a regular language.

The other way around, we show that any regular language can be described by a string-walking
pebble automaton. Let L be a regular language over an alphabet Σ. Let M = (Q,Σ, δ, I, F )
be a finite automaton such that L = L(M). We define a string-walking pebble automaton A =
(Q′, DSWPA(Σ), δ′, I, F ′) with

Q′ = Q ∪ {qfin}
δ′ = {(p, (labσ,→), q) | (p, σ, q) ∈ δ} ∪

{(p, (labσ, tail), qfin) | (p, σ, q) ∈ δ for some q ∈ F}
F ′ = {qfin}

It is obvious to see that L(A) = L(M) = L. �
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Chapter 2

Extensions to
String-Walking Pebble Automata

In this chapter we will introduce two extensions to the concept of string-walking pebble automata.
These extensions will be constructed in such a way that the class of languages recognized by
the automata is the same as the class of languages that the (ordinary) string-walking automata
recognize, i.e., the class of regular languages.

2.1 String-Walking Multi-Pebble Automata

The first extension to the string-walking automaton is the string-walking multi-pebble automaton.
This automaton can use more than one pebble. The number of pebbles available to the automaton
is fixed. The pebbles will be taken from a finite set and must be used “nested”. This means that, at
any point in the automaton’s walk, only the pebble that was dropped last can be lifted. It can easily
be seen that we can, without changing the automaton’s power, number the pebbles {1, 2, . . . , n}
and demand that the pebbles must be used in order. In order to see this, suppose the pebbles are
taken from a set P with |P | = n. Consider the set M of bijections from P to {1, 2, . . . , n} (there are
n! such mappings). We can now simulate an automaton with pebble set P by an automaton with
pebble set [1, n] by coding the pebble mapping into the states: for every state q we use additional
states {qm | m ∈ M}. We also modify the transitions with put and lift so that the information
on the mapping is maintained. Note that the constraint of the nested use of pebbles is necessary
to make sure that the automaton does not recognize non-regular languages. A string-walking
2-pebble automaton without this limitation could recognize the language L = {ancbn | n ∈ N}
by putting the pebbles at both ends of the string and moving them towards the middle of the
string in turn, checking that both pebbles arrive at the middle c after the same number of moves.
This kind of use of the pebbles is prohibited by demanding that the pebbles be used nested. In
broader terms, it can be shown that unnested multi-pebble automata are equivalent to two-way
multi-head automata, which in turn are equivalent to logarithmic space Turing machines.

Let n ≥ 1. We use the following set of directives for a string-walking n-pebble automaton over Σ:

DSWnPA(Σ) = DSWA(Σ) ∪ {puti, lifti,herei,¬herei | 1 ≤ i ≤ n}

For each w ∈ Σ∗ the relations for the new directives are as follows. The relations are on tuples
(u, k, p) ∈ Vw × [0, n]× ([1, n]→ Pw). Here k represents that pebbles 1, . . . , k are currently on the
string and p maps the pebbles to string positions. We define p0 : [1, n] → Pw with p0(i) = ⊥ for
all i ∈ [1, n] as the mapping with no pebbles on the string.

19



The relations hold for any u ∈ Vw, k ∈ [0, n], and pebble placement function p : [1, n]→ Pw.

Rw(puti) = {((u, i− 1, p), (u, i, p(i 7→ u))) | 1 ≤ i ≤ n}
Rw(lifti) = {((u, i, p), (u, i− 1, p(i 7→ ⊥))) | 1 ≤ i ≤ n, p(i) = u}
Rw(herei) = {((u, k, p), (u, k, p)) | 1 ≤ i ≤ k and p(i) = u}

Rw(¬herei) = {((u, k, p), (u, k, p)) | 1 ≤ i ≤ n and (i > k or p(i) 6= u)}

A string-walking n-pebble automaton over Σ is a finite automaton A over DSWnPA(Σ). For a string-
walking n-pebble automaton A = (Q,DSWnPA(Σ), δ, I, F ) and a string w ∈ Σ∗, a configuration
is a tuple (q, u, k, p) ∈ Q × Vw × [0, n] × ([1, n] → Pw). The set of all configurations of A and
w is names CA,w. The step relation �A,w is defined in the obvious way. For all configurations
(q, u, k, p), (q′, u′, k′, p′) ∈ CA,w,

(q, u, k, p)�A,w(q′, u′, k′, p′) iff ∃d ∈ DSWnPA(Σ) : (q, d, q′) ∈ δ, ((u, k, p), (u′, k′, p′)) ∈ Rw(d).

For each string w ∈ Σ∗, A computes the relation

Rw(A) = {(u, v) ∈ Vw × Vw | (q, u, 0, p0)�∗A,w(q′, v, 0, p0) for some q ∈ I and q′ ∈ F}.

The position relation R(A) and the language L(A) that A computes are defined in the usual way,
as well as the behaviour of transitions of the form (q, s, q′) with d ∈ DSWnPA(Σ)∗.

2.2 From String-Walking Multi-Pebble Automata to
MSO Formulas

In this section we show that any position relation that can be computed by a string-walking multi-
pebble automaton can also be defined by a binary MSO formula. Note that the other way around is
obvious, because string-walking multi-pebble automata are an extension to string-walking pebble
automata.

Theorem 14 For every string-walking n-pebble automaton A over an alphabet Σ there exists a
binary MSO formula φ(x, y) ∈ MSOL2(Σ) such that R(φ) = R(A).

Proof. We will prove this theorem using natural induction on the number of pebbles n. Note that
the case n = 1 is equal to the second part of Theorem 12. We present a proof similar to that in
Section 1.8. Choose a number of pebbles n > 1. In the induction step, it can be assumed that
Theorem 14 is valid for any string-walking (n− 1)-pebble automaton (the induction hypothesis).

The following Claim (similar to Lemma 10) states that after a string-walking n-pebble automaton
A drops its first pebble, its round-trips from the pebble position back to that same position can be
simulated by a unary MSO formula. In the proof of this lemma we use the induction hypothesis.

Claim Let A = (Q,DSWnPA(Σ), δ, I, F ) be a string-walking n-pebble automaton, with no transi-
tions with directives put1 or lift1. Then, for every pair of states p, q ∈ Q, there exists a formula
ψpq(x) ∈ MSOL1(Σ) such that, for all w ∈ Σ∗ and x ∈ Vw,

(p, x, 1, p0(1 7→ x))�∗A,w(q, x, 1, p0(1 7→ x)) iff (w, x) |= ψpq(x).

To prove this Claim, we construct a string-walking (n−1)-pebble automaton A′ over Σ ∪ (Σ×B1)
that simulates the walk of A from the position of the first pebble and back (similar to the proof
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of Lemma 10). We define A′ = (Q,DSW(n−)PA(Σ ∪ (Σ×B1)), δ′, {p}, {q}) where

δ′ = δ ∩ (Q×DSWA(Σ)×Q) ∪
{(s, lab(σ,1), t) | (s, here1, t) ∈ δ, σ ∈ Σ} ∪
{(s, labσ, t) | (s,¬here1, t) ∈ δ, σ ∈ Σ} ∪
{(s, lab(σ,1), t) | (s, labσ, t) ∈ δ, σ ∈ Σ} ∪
{(s, puti−1, t) | (s, puti, t) ∈ δ, 2 ≤ i ≤ n} ∪
{(s, lifti−1, t) | (s, lifti, t) ∈ δ, 2 ≤ i ≤ n} ∪
{(s, herei−1, t) | (s, herei, t) ∈ δ, 2 ≤ i ≤ n} ∪
{(s,¬herei−1, t) | (s,¬herei, t) ∈ δ, 2 ≤ i ≤ n}

The states of A′ are the same as those of A, A′’s only initial state is p and A′’s only final state is
q. All directives that do not use or test the pebble are simulated directly. Pebble 1 is simulated
by the marking, while pebbles 2, . . . , n are simulated by pebbles 1, . . . , n− 1. Now it is easy to see
that, for all s, t ∈ Q, w ∈ Σ∗, x, y, z ∈ Vw and w′ = mark(w, z),

(s, x, 1, p0(1 7→ z))�∗A,w(t, y, 1, p0(1 7→ z)) iff (s, x, 0, p0)�∗A′,w′(t, y, 0, p0).

This means that A′ on a string marked at position z, starting in a configuration without pebbles
and walking from position x to y simulates A on the unmarked string, in a configuration with
pebble 1 at position z. Note that, following the definition of Rw′(A′) for a string-walking (n− 1)-
pebble automaton,

(p, x, 0, p0)�∗A′,w′(q, y, 0, p0) iff (x, y) ∈ Rw′(A′).

According to the induction hypothesis, there exists a binary MSO formula

φ′pq(x, y) ∈ MSOL2(Σ ∪ (Σ×B1))

that simulates the walk of A′ on a marked string, such that, for all w ∈ Σ∗, x, y, z ∈ Vw and
w′ = mark(w, z),

(x, y) ∈ Rw′(A′) iff (w′, x, y) |= φ′pq(x, y).

The remainder of the proof of the Claim is again similar to the proof of Lemma 10. Again using
Lemma 2 to pull the marking into the free position variables of the MSO formula, we obtain a
formula φpq(x, y, z) ∈ MSOL3(Σ) such that, for all w ∈ Σ∗, x, y, z ∈ Vw and w′ = mark(w, z),

(w′, x, y) |= φ′pq(x, y) iff (w, x, y, z) |= φpq(x, y, z).

We now define the abbreviation ψpq(x) = φpq(x, x, x) ∈ MSOL1(Σ). Then, for all w ∈ Σ∗ and
x ∈ Vw,

(p, x, 1, p0(1 7→ x))�∗A,w(q, x, 1, p0(1 7→ x)) iff (w, x) |= ψpq(x).

This ends the proof of the Claim. We now continue with the proof of Theorem 14. Let A =
(Q,DSWnPA(Σ), δ, I, F ) be a string-walking n-pebble automaton over Σ. We will, like in the
proof of Theorem 11, define a string-walking automaton with MSO tests A′ over Σ such that
R(A) = R(A′). The MSO tests ψpq(x) in this automaton are obtained by applying the Claim to
the automaton derived from A by removing all transitions of the form (p, d, q) with d ∈ {put1, lift1}.
We define A′ = (Q,∆, δ′, I, F ) exactly the same as in the proof of Theorem 11, but with ¬here1,
put1 and lift1 instead of ¬here, put and lift:

∆ = {←,→, true(x), head(x), tail(x),¬head(x),¬tail(x)} ∪
{labσ(x) | σ ∈ Σ} ∪ {ψpq(x) | p, q ∈ Q}

δ′ = {(p, d, q) ∈ δ | d ∈ {←,→}} ∪
{(p, head(x), q) | (p, head, q) ∈ δ} ∪
{(p,¬head(x), q) | (p,¬head, q) ∈ δ} ∪
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{(p, tail(x), q) | (p, tail, q) ∈ δ} ∪
{(p,¬tail(x), q) | (p,¬tail, q) ∈ δ} ∪
{(p, labσ(x), q) | (p, labσ, q) ∈ δ} ∪
{(p, true(x), q) | (p,¬here1, q) ∈ δ} ∪
{(p, ψqr(x), s) | (p, put1, q) ∈ δ and (r, lift1, s) ∈ δ}

Again, the directives {←,→, head,¬head, tail,¬tail} and labσ (for σ ∈ Σ) are simulated straight-
forwardly. The directive ψqr(x) simulates the actions of A from put1 to the following lift1 (at the
same location), including all puti and lifti for 2 ≤ i ≤ n. It is easy to see that R(A) = R(A′).
Now, using Proposition 5, there exists a binary MSO formula φ(x, y) ∈ MSOL2(Σ) such that
R(φ) = R(A′) = R(A). �

2.3 String-Walking Marble Automata

Another way to extend string-walking pebble automata is the introduction of marbles instead of
pebbles. They come in several colours, that are labeled with a colour alphabet Γ. For each colour
γ ∈ Γ, the number of marbles of colour γ is not limited. In this paper, we give only the definition
of string-walking marble automata and of their behaviour. The idea is that every marble colour
can be used for a quantifier of MSO formulas; however, it is not proven here that string-walking
marble automata compute exactly the position relations that binary MSO formulas recognize.
This may not even be the case.

DSWMA(Σ,Γ) = DSWA(Σ) ∪ {putγ , liftγ , hereγ ,¬hereγ | γ ∈ Γ}

For all directives d, Rw(d) is a binary relation over Vw× (Γ→ 2Vw)×N× (N→ ((Vw×Γ)∪{⊥})).
An element (u, p, n, s) of this set means that

• The current position of the automaton is u.

• For every marble colour γ ∈ Γ, p(γ) is the set of positions where a marble of colour γ is
lying.

• n is the total number of marbles of any colour on the string.

• For every natural number 1 ≤ i ≤ n, if s(i) = (v, γ) ∈ Vw × Γ, then the ith marble that was
laid down is at position v and of colour γ. For i > n, s(i) = ⊥. Effectively, s is a stack of
marble colours and positions. This information is needed to enforce the nested use of the
marbles.

Note that p can be determined from n and s: for every γ ∈ Γ,

p(γ) = {u ∈ Vw | ∃i ∈ [1, n] : s(i) = (u, γ)} .

The relations for the directives from DSWA(Σ) are extended straightforwardly. These directives
do not alter p, n or s. For the directives putγ , liftγ , hereγ and ¬hereγ , the relations are as follows.
The definition of Rw(putγ) is complicated, because we demand that the marbles are nested as
usual and that all marbles of colour γ must be put down after each other, without putting down
a marble of another colour in between.
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Rw(putγ) = {((u, p, n, s), (u, p(γ 7→ p(γ) ∪ {u}), n+ 1, s(n+ 1 7→ (u, γ)))) | u 6∈ p(γ),
∀1 ≤ i < j ≤ n(¬∃v, v′ ∈ Vw, γ′ ∈ Γ : (γ′ 6= γ ∧ s(i) = (v, γ) ∧ s(j) = (v′, γ′)))}

Rw(liftγ) = {((u, p, n, s), (u, p(γ 7→ p(γ) \ {u}), n− 1, s(n 7→ ⊥))) | s(n) = (u, γ)}
Rw(hereγ) = {((u, p, n, s), (u, p, n, s)) | u ∈ p(γ)}

Rw(¬hereγ) = {((u, p, n, s), (u, p, n, s)) | u 6∈ p(γ)}

We define p0 : Γ → 2Vw with p0(γ) = ∅ for all γ ∈ Γ. We define s0 : N → ((Vw × Γ) ∪ {⊥}) with
s(i) = ⊥ for all i ∈ N.

The relation computed by A on a string w ∈ Σ∗ is

Rw(A) = {(u, v) ∈ Vw × Vw | (q, u, p0, 0, s0)�∗A,w(q′, v, p0, 0, s0) for some q ∈ I and q′ ∈ F}.
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Chapter 3

Binary MSO Formulas and
Tree-Walking Automata

3.1 Preliminaries

In this section we recall the well-known concepts of trees, finite tree automata, regular tree lan-
guages, and monadic second order logic.

Trees

In the usual way, trees are defined as finite, directed graphs with labeled nodes and edges. Let
Σ and Γ be alphabets of node labels and edge labels, respectively. A graph over (Σ,Γ) is a triple
(V,E, lab), with V a finite set of nodes, E ⊆ V × Γ× V the set of labeled edges, and lab : V → Σ
the node-labeling function. For a given graph g, its nodes, edges and node-labeling functions are
denoted Vg, Eg and labg, respectively.

The trees we consider have their nodes labeled by symbols from a ranked alphabet. The edge
from a parent to its i-th child is labeled with the number i. A ranked alphabet Σ is an alphabet Σ
together with a rank function rk : Σ→ N. For any symbol σ ∈ Σ, rk(σ) = k denotes that the rank
of σ is k. In terms of trees this means that a node labeled with σ will have k children. For all
k ∈ N, Σk = {σ ∈ Σ | rk(σ) = k} is the set of symbols of rank k. The rank interval of the ranked
alphabet Σ is [1,m], where m is the maximal rank of the elements of Σ; it is denoted rki(Σ).

A tree over Σ is an acyclic connected graph g over (Σ, rki(Σ)) such that

• No node of g has more than one incoming edge.

• For every node u of g, u has only outgoing edges with labels in [1, rk(labg(u))].

• For every node u of g and every i ∈ [1, rk(labg(u))], u has exactly one outgoing edge with
label i.

The set of all trees over Σ is denoted TΣ. A subset of TΣ is also called a tree language.

The root of a tree t (the node with no incoming edges) is denoted roott. For nodes u, v of t, if
(u, i, v) ∈ Et, then u is called the parent of v, and v is called the i-th child of u, denoted by u · i.
We also define u · 0 = u. We define the set of ancestors anc(u) of a node u as u itself and the
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ancestors of its parent. The least common ancestor of two nodes u and v (denoted lca(u, v)) is
defined as the node w such that

• w is an ancestor of both u and v.

• If w′ is an ancestor of both u and v, then w′ is an ancestor of w.

If u is an ancestor of v, then v is a descendant of u. The set des(u) denotes the set of all descendants
of u. For a node u of t, tu denotes the subtree of t with root u, i.e., the subgraph of t induced by
the set of all descendants of u.

Let Σ be a ranked alphabet and let k ∈ N. We define k-ary node relations in analogy to k-ary
position relations for strings. A k-ary node relation over Σ is a subset of {(t, u1, . . . , uk) | t ∈
TΣ and ui ∈ Vt for all i ∈ [1, k]}.

We define marked trees as follows, in analogy to marked strings. Let Σ be a ranked alphabet
and let k ≥ 1. The ranked alphabet Σ ∪ (Σ×Bk) is defined as usual, where we assign to the
symbol (σ, b1, . . . , bk) the rank rk(σ) (for σ ∈ Σ and bi ∈ [1, k] for i ∈ [1, k]). Let t ∈ TΣ and
let u1, . . . , uk ∈ Vt. We define mark(t, u1, . . . , uk) as a tree over Σ ∪ (Σ×Bk), with node-set Vt,
edges Et and node-labeling function lab′ : Vt → Σ ∪ (Σ×Bk) with lab′(u) = labt(u) if u 6= ui for
all i ∈ [1, k], and lab′(u) = (labt(u), (u = u1), . . . , (u = uk)) otherwise (where (u = ui) = 1 iff u
equals ui).

Finite Tree Automata

A finite tree automaton [GS84] traverses a tree bottom-up. It starts in all the leaves of the tree,
in parallel, and works its way up to the root. A finite tree automaton has a finite set of states Q
and a transition function. The state of the automaton in a node of the tree is determined by the
states of the children of the node and by the label of the node. For a symbol σ with rk(σ) = k,
the transition function δσ is therefore a function from Qk to Q. A finite tree automaton accepts
a tree if it ends at the root of the tree in one of a set of pre-determined final states.

Let Σ be a ranked alphabet. A (deterministic) finite tree automaton over Σ is a 4-tuple M =
(Q,Σ, δ, F ) where Q is a finite set of states, Σ is the input alphabet, δ = {δσ | σ ∈ Σ} with, for
σ ∈ Σk, δσ : Qk → Q the transition function for σ, and F ⊆ Q the set of final states. For every
tree t ∈ TΣ and node u ∈ Vt, the state in which M reaches u, denoted stateM,t(u), is defined by
bottom-up induction as stateM,t(u) = δσ(stateM,t(u · 1), · · · , stateM,t(u · k)) where labt(u) = σ
with rk(σ) = k. The tree language recognized by M is L(M) = {t ∈ TΣ | stateM,t(root(t)) ∈ F}.
A tree language L is called a regular tree language if it is recognized by a finite tree automaton.
The class of all regular tree languages is named REGT.

For any finite tree automaton M = (Q,Σ, δ, F ), tree t ∈ TΣ and node u ∈ Vt, the set of suc-
cessful states of M at u, denoted by succM,t(u), is defined (by top-down induction) as follows:
succM,t(roott) = F and, for a node u ∈ Vt with labt(u) = σ, rk(σ) = k > 0, succM,t(u · i) is
the set of all states q ∈ Q such that δσ(q1, . . . , qi−1, q, qi+1, . . . , qk) ∈ succM,t(u), where qj =
stateM,t(u · j) for j ∈ [1, i − 1] ∪ [i + 1, k]. Intuitively, q ∈ succM,t(u) means that M will reach
the root of t in a final state assuming that it reaches u in state q (instead of stateM,t(u)). Thus,
t ∈ L(M) iff stateM,t(u) ∈ succM,t(u). This can easily be proven ([BE97], Lemma 1).

Monadic Second Order Logic (on trees)

The monadic second order logic on strings described in Section 1.1 can be extended to trees (see,
e.g., [TW68, Don70, BE97]). We will in short describe the differences. Let Σ be a ranked alphabet.
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• The variables x, y, . . . are now node variables; the variables X,Y, . . . are now node-set vari-
ables. For a given tree t ∈ TΣ, node variables range over Vt and node-set variables range
over subsets of Vt.

• The atomic formulas are labσ(x), for every σ ∈ Σ, denoting that x has label σ; edgi(x, y),
for every i ∈ rki(Σ), denoting that y is the ith child of x; and x ∈ X, denoting that x is an
element of X.

• The language defined by a formula φ ∈ MSOL0(Σ) is now a tree language, L(φ) = {t ∈ TΣ |
t |= φ}

The class of all MSO definable tree languages is named MSOT.

The following classical result from [Don70, TW68] states that MSOT=REGT, i.e., that formulas
from monadic second order logic with no free variables define exactly the regular tree languages:

Proposition 15 A tree language is MSO definable if and only if it is regular.

As stated in Section 1.1, the results of Lemma 2, Corollary 3, and Lemma 4 are also valid for trees
(with Σ a ranked alphabet and t ∈ TΣ instead of w ∈ Σ∗).

3.2 Tree-Walking Automata

A tree-walking automaton (see, e.g., [KS81]) is very similar to a string-walking automaton (Sec-
tion 1.2). A tree-walking automaton can walk freely on the tree. In this paper we will give a
definition of tree-walking automaton that is slightly different from the definition in [KS81]. First
of all, we will make use of directives to define the behaviour of the automaton, while [KS81] di-
rectly defines a binary step relation on the set of configurations. Secondly, with our definition the
automaton is able to check which child of its parent the current node is. In [KS81], the automaton
can only move up, without any restriction to child number. This makes our automaton more
powerful (i.e., it can recognize more tree languages).

Let Σ be a ranked alphabet. Like a string-walking automaton, a tree-walking automaton over
Σ is a finite automaton with a special set of directives as input alphabet. For a tree-walking
automaton, we define the set of directives as

DTWA(Σ) = {↑i, ↓i| i ∈ rki(Σ)} ∪ {root,¬root} ∪ {labσ | σ ∈ Σ}.

The meaning of the directives is as follows:

• ↑i means go up via an edge labeled by i, i.e., move to the parent, provided the current node
is the ith child of its parent. This directive can be used to check which child of its parent
the current node is.

• ↓i means go down via an edge labeled by i, i.e., move to the ith child of the current node.

• root checks whether the current node is the root of the tree.

• ¬root is the negation of root.

• labσ checks whether the current node is labeled by σ.

Note that the directive root corresponds to the directive head of the string-walking automaton.
A directive “leaf” (corresponding to tail) is not necessary since the automaton can test whether

26



the label of the current node has rank 0. Also, ¬root can be simulated by ↑i↓i for all i ∈ rki(Σ).
To formalize the behaviour of these directives we define for each tree t ∈ TΣ and each directive
d ∈ DTWA(Σ) the following binary relation Rt(d) on Vt:

Rt(↑i) = {(u, v) | (v, i, u) ∈ Et}
Rt(↓i) = {(u, v) | (u, i, v) ∈ Et}

Rt(root) = {(u, u) | u = roott}
Rt(¬root) = {(u, u) | u 6= roott}
Rt(labσ) = {(u, u) | labt(u) = σ}

Like the definition of string-walking automata, a tree-walking automaton over Σ is a finite automa-
ton A over DTWA(Σ). For a tree-walking automaton A = (Q,DTWA(Σ), δ, I, F ) and a tree t ∈ TΣ,
an element (q, u) of Q × Vt is a configuration of the automaton. The set of all configurations of
A and t is denoted by CA,t. A configuration (q, u) denotes that the automaton A is in state q at
node u.

Let A = (Q,DTWA(Σ), δ, I, F ) be a tree-walking automaton over Σ and let t ∈ TΣ. Like with
string-walking automata, we define a step-relation �A,t on the set of configurations as follows.
For every (q, u), (q′, u′) ∈ CA,t,

(q, u)�A,t(q′, u′) iff ∃d ∈ DTWA(Σ) : (q, d, q′) ∈ δ and (u, u′) ∈ Rt(d).

The automaton A computes on each tree t ∈ TΣ the binary relation

Rt(A) =
{

(u, u′) ∈ Vt × Vt | (qin, u)�∗A,t(qfin, u
′) for some qin ∈ I and qfin ∈ F

}
.

The node relation that A computes is

R(A) = {(t, u, v) | t ∈ TΣ and (u, v) ∈ Rt(A)} .

The definitions of these relations (�A,t, Rt(A) and R(A)) are mutatis mutandis equal to the
definitions for string-walking automaton in Section 1.2.

The tree language that A recognizes is defined as

L(A) = {t ∈ TΣ | (roott, v) ∈ Rt(A) for some v ∈ Vt} .

Note that we can assume that the walk of the automaton ends as well as begins in roott, since we
can easily add extra transitions to make the automaton walk to the root at the end of its walk.
The class of all tree languages recognized by any tree-walking automaton is named TWA. It is an
open problem if TWA=REGT.

Like in the case of string-walking automata, we will also allow transitions of the form (p, s, q) with
s ∈ DTWA(Σ)∗. If s = d1 · · · dn, we define, for all t ∈ TΣ,

Rt(s) = Rt(d1) ◦ · · · ◦Rt(dn).

As with string-walking automata, these extended directives can easily be implemented by adding
extra transitions and states.

Determinism of tree-walking automata in defined in analogy with determinism of string-walking
automata. A tree-walking automaton A = (Q,DTWA(Σ), δ, I, F ) is deterministic if the following
conditions hold:

1. #I = 1.

2. If (p, d, q) ∈ δ, then p 6∈ F .
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3. For all distinct transitions (p, d1, q1), (p, d2, q2) ∈ δ, d1 and d2 are two mutually exclusive
directives in DTWA(Σ).

Two directives d1, d2 ∈ DTWA(Σ) are again mutually exclusive if, for all t ∈ TΣ, dom(Rt(d1)) ∩
dom(Rt(d2)) = ∅. The following pairs of directives in DTWA(Σ) are mutually exclusive:

• {↑i, ↑j} with i 6= j.

• {↑i, root} for i ∈ rki(Σ)

• {root,¬root}

• {labσ1 , labσ2} with σ1 6= σ2

• {↓i, labσ} if i > rk(σ).

3.3 Push-Down Tree-Walking Automata

A push-down tree-walking automaton walks on a tree, starting in the root of the tree. It has a
push-down store. At each step of the automaton’s walk, its possible moves are determined by the
automaton’s state, by the symbol at the current position of the automaton and by the push-down
symbol at the top of the store. If the automaton moves up in the tree, the top symbol is removed
from the push-down store; if the automaton moves down, a new symbol is added to the push-down
store. There are two main differences between the push-down tree-walking automata as described
in this section and those in literature (e.g., [KS81]). Here, directives are used to describe the
different possible actions of the automaton. Furthermore, [KS81] lets the automaton accept a tree
if it walks up from the root, leaving the tree in a final state; in the description here, the walk can
end in any node of the tree in a final state. These differences have no consequences for the power
of the automaton. Note that the tree-walking automaton in [KS81] is the push-down tree-walking
automaton with only one push-down symbol.

We will present the push-down tree-walking automaton as an extension of the tree-walking au-
tomaton. Let Σ be a ranked alphabet and let Γ be an alphabet. The directives of a push-down
tree-walking automaton are

DPDTWA(Σ,Γ) = {↑} ∪ {↓i,γ | i ∈ rki(Σ), γ ∈ Γ} ∪
{labσ | σ ∈ Σ} ∪

{
stayγ1,γ2

| γ1, γ2 ∈ Γ
}
.

The meaning of these directives is as follows:

• ↑ means go up to the parent of the current node and remove the topmost symbol from the
push-down store. Note that the subscript i is not necessary for this automaton. As the
automaton traverses the tree, routing information can be placed in the push-down store.

• ↓i,γ means go down via an edge labeled by i and add γ to the push-down store.

• labσ checks whether the current node is labeled by σ.

• stayγ,γ′ checks whether the topmost symbol from the push-down store is γ and, if so, replaces
it by γ′.

The push-down tree-walking automaton does not need the directives root and ¬root. By using
marked push-down symbols on the bottom of the push-down store, the automaton can check
whether the current node is the root of the tree by inspecting the top symbol of the push-down
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store. If convenient, however, we will use the directives root and ¬root since a push-down tree-
walking automaton with these directives can be simulated by a push-down tree-walking automaton
without root and ¬root.

To formalize the directives, we define for each tree t ∈ TΣ and each directive d ∈ DPDTWA(Σ,Γ)
the following binary relation Rt(d) on pairs (u, β) where u ∈ Vt is the current node, and β =
γ1 · · · γn ∈ Γ∗ is the current contents of the push-down store with n equal to the number of
ancestors of u.

Rt(↑) = {((u, γ1 · · · γn), (v, γ1 · · · γn−1)) | v is the parent of u}
Rt(↓i,γ) = {((u, γ1 · · · γn), (v, γ1 · · · γnγ)) | v is the ith child of u}
Rt(labσ) = {((u, γ1 · · · γn), (u, γ1 · · · γn)) | labt(u) = σ}

Rt(stayγ,γ′) = {((u, γ1 · · · γn−1γn), (u, γ1 · · · γn−1γ
′)) | γn = γ}

Let Σ be a ranked alphabet (of node labels) and let Γ be an alphabet (of push-down symbols) with
a designated element γin (the initial push-down symbol). A push-down tree-walking automaton
over (Σ,Γ) is a finite automaton A over DPDTWA(Σ,Γ). For a push-down tree-walking automaton
A = (Q,DPDTWA(Σ,Γ), δ, I, F ) over (Σ,Γ) and a tree t ∈ TΣ, the configurations of A are triples
(q, u, β), with q ∈ Q the state of the automaton, u ∈ Vt the current node, and β = γ1 · · · γn ∈ Γ∗

the contents of the push-down store, where n is equal to the number of ancestors of u. The set of
all configurations on A and t is denoted by CA,t.

Let A = (Q,DPDTWA(Σ,Γ), δ, I, F ) be a push-down tree-walking automaton over (Σ,Γ) and let
t ∈ TΣ. The definition of the step-relation �A,t is almost identical to the definition of the step-
relation for tree-walking automata. For every (q, u, β), (q′, u′, β′) ∈ CA,t,

(q, u, β)�A,t(q′, u′, β′) iff ∃d ∈ DPDTWA(Σ,Γ) : (q, d, q′) ∈ δ and ((u, β), (u′, β′)) ∈ Rt(d).

The tree language that A recognizes is defined as

L(A) =
{
t ∈ TΣ | (qin, roott, γin)�∗A,t(qfin, u, β) for some qin ∈ I, qfin ∈ F, u ∈ Vt and β ∈ Γ∗

}
.

The automaton starts in the root of a tree with only the initial push-down symbol γin on the push-
down store. It recognizes the tree if it reaches a final state in any node and with any contents of
the push-down store. The class of all tree languages recognized by any push-down tree-walking
automaton is named PDTWA. Note that because of the push-down store there is no reasonable
definition for a binary node relation for push-down tree-walking automata.

Transitions of the form (p, s, q) with s ∈ DTWA(Σ)∗ are treated in the same way as with tree-
walking automata. Determinism of push-down tree-walking automata is defined in the same way
as for tree-walking automata. The following pairs of directives in DPDTWA(Σ,Γ) are mutually
exclusive:

• {labσ1 , labσ2} with σ1 6= σ2

• {stayγ1,γ′1
, stayγ2,γ′2

} with γ1 6= γ2.

3.4 Equivalence of Finite Tree Automata and
Push-Down Tree-Walking Automata

In this section we show the known result [KS81] that push-down tree-walking automata recognize
exactly the regular tree languages. First we show that for every finite tree automaton there exists
a push-down tree-walking automaton that recognizes the same language; then we show that, the
other way around, for every push-down tree-walking automaton there exists a finite tree automaton
that recognizes the same language.
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Lemma 16 For every finite tree automaton M there exists a push-down tree-walking automaton
A such that L(A) = L(M).

Proof. Let M = (Q,Σ, δ, F ) be a finite tree automaton. We construct a push-down tree-walking
automaton A = (Q′, DPDTWA(Σ,Γ), δ′, {qin}, {qfin}) over (Σ,Γ) such that L(A) = L(M). The
automaton A walks on a tree t in a single pass from left to right. It enters each subtree of t with
root u in state qin and leaves it in state stateM,t(u). It uses the pushdown store to remember,
(a) how many children of u have already been processed and (b) what the resulting states were.
Therefore we define Q′ = Q ∪ {qin, qfin} (with qin, qfin 6∈ Q), Γ =

⋃
{Qi | i ∈ rki(Σ)} ∪ {λ} and

γin = λ. The pushdown symbol λ (the empty string) indicates that no subtrees have been traversed
yet. If the automaton is at node u and the pushdown symbol at the top of the pushdown store is
q1 · · · qk, this means that the first k subtrees of u have been traversed and that, for every i with
1 ≤ i ≤ k, stateM,t(u · i) = qi.

The transition relation δ′ is as follows:

δ′ = {(qin, (¬root, labσ, ↑), δσ) | σ ∈ Σ, rk(σ) = 0} ∪
{(qin, (root, labσ), qfin) | σ ∈ Σ, rk(σ) = 0, δσ ∈ F} ∪
{(qin, (labσ, ↓1,λ), qin) | σ ∈ Σ, rk(σ) > 0} ∪
{(qk, (labσ, stayq1···qk−1,q1···qk , ↓k+1,λ), qin) |

σ ∈ Σ, ∀j ∈ [1, k](qj ∈ Q), k < rk(σ)} ∪
{(qk, (¬root, labσ, stayq1···qk−1,q1···qk−1

, ↑), δσ(q1, . . . , qk)) |
σ ∈ Σ, ∀j ∈ [1, k](qj ∈ Q), k = rk(σ) > 0} ∪

{(qk, (root, labσ, stayq1···qk−1,q1···qk−1
), qfin) |

σ ∈ Σ, ∀j ∈ [1, k](qj ∈ Q), k = rk(σ) > 0, δσ(q1, . . . , qk) ∈ F}

�

Lemma 17 For every push-down tree-walking automaton A there exists a finite tree automaton
M such that L(M) = L(A).

Proof. Let A = (Q,DPDTWA(Σ,Γ), δ, I, F ) be a push-down tree-walking automaton over (Σ,Γ).
From this automaton, we first construct another push-down tree walking automaton A′. A′ is
equal in behaviour to A, except that when A is in a final state, A′ has extra transitions to
move up to the root of the tree and then further up “out” of the tree in an extra state qfin.
Note that A′ can never execute the latter instruction; it is added only to make the construction
of M easier. We define A′ = (Q′, DPDTWA(Σ,Γ), δ′, I, {qfin}) with Q′ = Q ∪ {qfin}, qfin 6∈ Q
and δ′ = δ ∪ {(q, ↑, qfin) | q ∈ F} ∪ {(qfin, ↑, qfin)}. We now construct a finite tree automaton
M = (QM ,Σ, δM , FM ) such that L(M) = L(A). We use the method of transition tables (see, e.g.,
[KS81]). In this method, the states of the finite tree automaton are relations R ⊆ (Γ×Q′)×Q′.
When the finite tree automaton computes a relation R as state for a node u with ((γ, q), q′) ∈ R
, this means that the push-down tree-walking automaton A′ can traverse the subtree with u as
root, starting at node u in state q with symbol γ on the top of the push-down store, and emerging
from the subtree (by an edge from u to its parent) in state q′, with γ removed from the push-down
store. At the root, A′ “emerging” from the tree in state qfin means that A arrived in a final state.

Formally, we define

QM = 2(Γ×Q′)×Q′

δM = {δσ | σ ∈ Σ}, with δσ (σ ∈ Σ) defined below
FM = {R ⊆ (Γ×Q′)×Q′ | ((γin, qin), qfin) ∈ R for some qin ∈ I}
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Here, for every σ ∈ Σ, the transition function for symbol σ is δσ : QM rk(σ) → QM with

δσ(R1, . . . , Rn) = {((γ, q), q′′) | γ ∈ Γ, q, q′′ ∈ Q′ and (γ, q)R(σ,R1, . . . , Rn)∗ (γ′, q′)
for some (γ′, q′) ∈ Γ×Q′ with (q′, ↑, q′′) ∈ δ′}.

In this definition, R(σ,R1, . . . , Rn) is the binary relation on Γ×Q′ that contains the results of the
possible actions of the push-down tree-walking automaton A′ while staying on the same node or
entering a subtree and emerging again from it. The symbol σ is the symbol at the current position
and the relations Ri ⊆ (Γ×Q′)×Q′ are the transition tables of the children of the current node.
The relation R is formally defined as

R(σ,R1, . . . , Rn) = {((γ, q), (γ, q′′)) | (q, ↓i,γ′ , q′) ∈ δ′ and ((γ′, q′), q′′) ∈ Ri
for some i ∈ [1, rk(σ)]} ∪

{((γ, q), (γ′, q′)) | (q, stayγ,γ′ , q
′) ∈ δ′} ∪

{((γ, q), (γ, q′)) | (q, labσ, q′) ∈ δ′}.

Note that these relations can effectively be computed. The computation of R(σ,R1, . . . , Rn) is
straightforward. Since it is a binary relation on a finite set, its reflexive transition closure can
be computed by regarding the relation as a graph and computing all paths in the graph (the
nodes of the graph are the elements of Γ × Q′ and there is an edge from (γ1, q1) to (γ2, q2) iff
((γ1, q1), (γ2, q2)) is in the relation). �

Combining these two lemmas yields the following theorem.

Theorem 18 PDTWA = REGT

3.5 Tree-Walking Marble Automata

Another way to extend tree-walking automata is with marbles. The concept of marbles is the
same as that of Section 2.3 for strings, but they are used here in a different way. Marbles are
coloured (with symbols from an alphabet) and there are infinitely many marbles of each colour
available. Like pebbles, the automaton can drop a marble at a certain node, check for its presence
any later time and lift it again. It is not allowed to put more than one marble of the same colour
on the same node. Note that by taking the powerset of the marble alphabet we can even pose
that not more than one marble (of any colour) is on any node. In the rest of this paper we will
implicitly assume that this is the case. Unlike pebbles, putting down a marble on a certain node
restrains the automaton to the subtree of which that node is the root, until the marble is lifted
again. This restriction makes sure that the marbles are “almost” nested: unnested use of marbles
is only possible if the marbles are at the same node. We will show that this restriction makes the
tree-walking marble automaton very similar to the push-down tree-walking automaton, while it
allows for the definition of the binary relation computed by a tree-walking marble automaton on
a tree, in a natural way.

Let Σ be a ranked alphabet and let Γ be an alphabet of marble labels. Note that there is no γin
necessary now. For a tree-walking marble automaton over (Σ,Γ), we define the set of directives
as

DTWMA(Σ,Γ) = DTWA(Σ) ∪ {putγ , liftγ , hereγ ,¬hereγ | γ ∈ Γ}.
The meaning of the extra directives is as follows:

• putγ means drop a marble with label (or “colour”) γ on the current node, if one is not yet
there.

• liftγ means pick up a marble with label γ, if one is here.
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• hereγ means check whether there is a marble with label γ at the current node.

• ¬hereγ is the negation of hereγ .

For t ∈ TΣ, the position of the marbles is formalized by a function m : Γ→ 2Vt . For this function,
m(γ) = S ⊆ Vt means that exactly the nodes in S have a marble with label γ. The set of all marble
position functions is denoted by Mt,Γ = Γ → 2Vt . The behaviour of the directives, including the
restrictions mentioned above, is formalized by defining for each tree t ∈ TΣ and each directive
d ∈ DTWMA(Σ,Γ) the following binary relation Rt(d) on Vt ×Mt,Γ.

Rt(↑i) = {((u,m), (u′,m)) | u is the ith child of u′ and for all γ ∈ Γ, u 6∈ m(γ)}
Rt(↓i) = {((u,m), (u′,m)) | u′ is the ith child of u}

Rt(root) = {((roott,m), (roott,m))}
Rt(¬root) = {((u,m), (u,m)) | u 6= roott}
Rt(labσ) = {((u,m), (u,m)) | labt(u) = σ}
Rt(putγ) = {((u,m), (u,m′)) | u 6∈ m(γ),m′ = m(γ 7→ m(γ) ∪ {u})}
Rt(liftγ) = {((u,m), (u,m′)) | u ∈ m(γ),m′ = m(γ 7→ m(γ) \ {u})}
Rt(hereγ) = {((u,m), (u,m)) | u ∈ m(γ)}

Rt(¬hereγ) = {((u,m), (u,m)) | u 6∈ m(γ)}

The relation for d =↑i makes sure that the marbles are used nested, since it only allows moving
up if there are no marbles on the current node.

Let Σ be a ranked alphabet and let Γ be an alphabet. A tree-walking marble automaton over
(Σ,Γ) is a finite automaton A over DTWMA(Σ,Γ). For a tree-walking marble automaton A =
(Q,DTWMA(Σ,Γ), δ, I, F ) over (Σ,Γ) and a tree t ∈ TΣ, the configurations of A are triples
(q, u,m) ∈ Q × Vt × Mt,Γ, with q the state of the automaton, u the current node and m the
marble position function. The set of all configurations of A and t is denoted by CA,t.

Let A = (Q,DTWMA(Σ,Γ), δ, I, F ) be a tree-walking marble automaton over (Σ,Γ) and let t ∈ TΣ.
As usual, we define the binary step-relation �A,t on CA,t. For every (q, u,m), (q′, u′,m′) ∈ CA,t,

(q, u,m)�A,t(q′, u′,m′) iff ∃d ∈ DTWMA(Σ,Γ) : (q, d, q′) ∈ δ and (u,m)Rt(d) (u′,m′).

The automaton A computes on each tree t ∈ TΣ the binary relation

Rt(A) =
{

(u, u′) ∈ Vt × Vt | (qin, u,m0)�∗A,t(qfin, u
′,m0) for some qin ∈ I and qfin ∈ F

}
,

where m0 : Γ → 2Vt with m0(γ) = ∅ for all γ ∈ Γ. Note that this definition demands that A
removes all marbles from the tree. The node relation that A computes is, as usual,

R(A) = {(t, u, v) | t ∈ TΣ and (u, v) ∈ Rt(A)}.

The tree language that A recognizes is also defined in the familiar way:

L(A) = {t ∈ TΣ | (t, roott, v) ∈ R(A) for some v ∈ Vt}.

The class of all tree languages recognized by a tree-walking marble automaton is named TWMA.
Transitions of the form (q, s, q′) with s ∈ DTWMA(Σ,Γ)∗ are treated in the usual way. Determinism
of tree-walking marble automata is defined in the same way as of (simple) tree-walking automata.
The following pairs of directives in DTWMA(Σ,Γ) are mutually exclusive:

• {↑i, ↑j} with i 6= j.

• {↑i, root}.
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• {root,¬root}.

• {labσ1 , labσ2} with σ1 6= σ2.

• {↓i, labσ} with i > rk(σ).

• {↑i,hereγ} and {↑i, liftγ} with i ∈ rki(Σ) and γ ∈ Γ (if there is any marble, the automaton
is not allowed to move up).

• {putγ , liftγ}, {putγ , hereγ} and {liftγ ,¬hereγ} with γ ∈ Γ.

We define the abbreviation ¬hereΓ for ¬hereγ1 , . . . ,¬hereγk with Γ = {γ1, . . . , γk}. These direc-
tives together test that there is no marble on the current node.

Note that root and ¬root are needed for the tree-walking marble automaton because, unlike the
push-down tree-walking automaton, a tree-walking marble automaton does not have to start its
walk at the root of the tree, so it is not always possible to place a special marble at the root.
Likewise, directives ↑i for i ∈ rki(Σ) are needed because, when the automaton starts in a certain
node not equal to the root, the path from the root to that node cannot be coded into marbles.

Theorem 19 TWMA = REGT

Proof. Since PDTWA=REGT (Theorem 18), it is sufficient to show that TWMA=PDTWA. First
we prove that any push-down tree walking automaton can be simulated by a tree-walking marble
automaton. Let A = (Q,DPDTWA(Σ,Γ), δ, I, F ) be a push-down tree-walking automaton over
(Σ,Γ). We define a tree-walking marble automaton

A′ = (Q ∪ {qin, qfin}, DTWMA(Σ,Γ), δ′, {qin}, {qfin})

with a new initial state qin and a new final state qfin. This automaton simulates A in the following
way. First, a marble with colour γin, representing the initial push-down symbol, is put on the
current node. Then the directive ↓i,γ is simulated by moving down to the ith child of the current
node and then putting down a marble of colour γ. On the way up, the directive ↑ is simulated
by picking up any marble (there is always exactly one on the current node) and moving up to
the parent of the current node. The directive labσ is also available in DTWMA(Σ,Γ), so it can
be simulated directly. When A reaches a final state, A′ moves up to the root, picking up all
the marbles on the way up, so that it accepts the tree when it picks up the last marble at the
root. A configuration of the push-down tree-walking automaton (u, γ1 · · · γn) is simulated by a
configuration (u,m) of the tree-walking marble automaton, where, for all i ∈ [1, n], m has a marble
γi on the ith node of the path from the root to u, and no other marbles. A′ has the following
transitions:

δ′ = {(qin, putγin , q) | q ∈ I} ∪
{(q, (liftγ , ↑i), q′) | (q, ↑, q′) ∈ δ, γ ∈ Γ, i ∈ rki(Σ)} ∪
{(q, (↓i, putγ), q′) | (q, ↓i,γ , q′) ∈ δ} ∪
{(q, labσ, q′) | (q, labσ, q′) ∈ δ} ∪
{(q, (liftγ1 , putγ2

), q′) | (q, stayγ1,γ2
, q′) ∈ δ} ∪

{(q, liftγ , qfin) | q ∈ F, γ ∈ Γ} ∪
{(qfin, (↑i, liftγ), qfin) | i ∈ rki(Σ), γ ∈ Γ}.

Obviously, L(A′) = L(A).

The other way around, let A = (Q,DTWMA(Σ,Γ), δ, I, F ) be a tree-walking marble automaton
over (Σ,Γ). As observed before, we may assume that the automaton is constructed in such a way
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that, at any time, there is at most one marble on any node. Note that, due to the restriction of
the automaton to the subtree of the current node whenever a marble is put down, at any moment
all marbles lie on the path from the root to the current node. This path can be viewed as a push-
down store, except that here “empty” places in the store are allowed. To account for these empty
places, we add an extra marble colour γ0. In order to simulate root, ¬root and the directives ↑i (for
i ∈ rki(Σ)), extra information is put on the push-down store. The new push-down symbols are of
the form (γ, i, r), where γ ∈ Γ is the marble colour (or γ = γ0 if there is no marble on the current
node), the current node is the ith child of its father, and r = 1 if the current node is the root and
r = 0 if the current node is not the root. The initial pushdown symbol is γin = (γ0, 1, 1). Now
the push-down store can be used to simulate the marbles. We define a push-down tree-walking
automaton A′ = (Q′, DPDTWA(Σ,Γ′), δ′, I, F ′).

• When A moves down (↓i), A′ also moves down and puts the symbol (γ0, i, 0) on the push-
down store, which means that there is no marble on the (new) current node, the current
node is the ith child of its father and the current node is not the root.

• When A moves up (↑i), A′ checks the symbol on top of the push-down store to make sure
that the child number is correct and that there is no marble on the current node.

• A′ can simulate root and ¬root by checking the symbol on top of the push-down store,
(γ, i, r) with r = 1 for root and r = 0 for ¬root.

• The directive labσ can be simulated directly.

• The directive putγ can be simulated by first checking that there is no marble on the current
node, so the symbol on top of the push-down store is (γ0, i, r) and then replacing γ0 by γ.

• To simulate liftγ , A′ checks that there is a marble on the current node with colour γ and
then replaces it with “colour” γ0.

• The directive hereγ is simulated by inspecting the top symbol of the push-down store and
making sure that it is of the form (γ, i, r). Similarly for ¬hereγ and a top symbol of any of
the forms (γ′, i, r) with γ′ 6= γ.

• When A reaches a final state, A′ must make sure that there are no marbles left on the tree
before it can accept the tree. Because all marbles are on the path from the current node to
the root, A′ walks up to the root, checking the absence of marbles on the way, and enter the
final state qfin when it arrives at the root and there is no marble there either.

Formally, the push-down alphabet and the transitions of A′ are defined as follows.

Γ′ = (Γ ∪ {γ0})× rki(Σ)× {0, 1} with γin = (γ0, 1, 1)
Q′ = Q ∪ {up, qfin}
F ′ = {qfin}
δ′ = {(q, (stay(γ0,i,r),(γ0,i,r), ↑), q

′) | r ∈ {0, 1}, (q, ↑i, q′) ∈ δ} ∪
{(q, ↓i,(γ0,i,0), q

′) | (q, ↓i, q′) ∈ δ} ∪
{(q, stay(γ,i,1),(γ,i,1), q

′) | γ ∈ Γ ∪ {γ0}, i ∈ rki(Σ), (q, root, q′) ∈ δ} ∪
{(q, stay(γ,i,0),(γ,i,0), q

′) | γ ∈ Γ ∪ {γ0}, i ∈ rki(Σ), (q,¬root, q′) ∈ δ} ∪
{(q, labσ, q′) | (q, labσ, q′) ∈ δ} ∪
{(q, stay(γ0,i,r),(γ,i,r), q

′) | i ∈ rki(Σ), r ∈ {0, 1}, (q, putγ , q
′) ∈ δ} ∪

{(q, stay(γ,i,r),(γ0,i,r), q
′) | i ∈ rki(Σ), r ∈ {0, 1}, (q, liftγ , q′) ∈ δ} ∪

{(q, stay(γ,i,r),(γ,i,r), q
′) | i ∈ rki(Σ), r ∈ {0, 1}, (q, hereγ , q′) ∈ δ} ∪

{(q, stay(γ,i,r),(γ,i,r), q
′) | i ∈ rki(Σ), r ∈ {0, 1}, γ ∈ (Γ ∪ {γ0}),
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(q,¬hereγ′ , q′) ∈ δ for some γ′ 6= γ} ∪
{(q, stay(γ0,i,1),(γ0,i,1), qfin) | q ∈ F, i ∈ rki(Σ)} ∪
{(q, (stay(γ0,i,0),(γ0,i,0), ↑), up) | q ∈ F, i ∈ rki(Σ)} ∪
{(up, (stay(γ0,i,0),(γ0,i,0), ↑), up) | i ∈ rki(Σ)} ∪
{(up, stay(γ0,i,1),(γ0,i,1), qfin) | i ∈ rki(Σ)}

Since this automaton simulates A, we have L(A′) = L(A). �

One might wonder why it is necessary to restrict a tree-walking automaton, when it puts down a
marble on a node, to the subtree of which that node is the root. We will show that just demanding
that the marbles be used nested is not enough; this would allow the automaton to recognize non-
regular tree languages. As an example, consider the non-regular tree language L = {tn | n ∈ N}
over the ranked alphabet Σ = {a, b, c} with rk(a) = rk(b) = 1 and rk(c) = 0, with, for all n ∈ N,

Vtn = {xi, yi | i ∈ [1, n]} ∪ {z}
Etn = {(xi, 1, xi+1), (yi, 1, yi+1) | i ∈ [1, n− 1]} ∪ {(xn, 1, y1), (yn, 1, z)}

labtn = {(xi, a), (yi, b) | i ∈ [1, n]} ∪ {(z, c)}

This tree language L is similar to the (non-regular) language {anbnc | n ∈ N}. If we only demand
the nested use of marbles, L is recognized by the tree-walking marble automaton A over (Σ, {γ}),
that puts the first marble on the first “a”, walks to the bottom of the tree, checks whether there
is a “c” there and a “b” directly above, puts a marble on that “b”, walks up the tree to the first
“a” again, puts a marble on the second “a” and continues walking up and down until it reaches
the middle, where it can check if there are as much “a”’s as “b”’s. It then removes the marbles in
the reverse order, walking up and down the tree in a similar way.

Note that tree-walking multi-pebble automata, defined in analogy to the string-walking multi-
pebble automata of Section 2.1, recognize only regular tree languages (but it is open whether
or not they recognize them all). Multi-pebble automata have only a finite number of pebbles
available, contrary to the infinite number of marbles of marble automata. This means the above
described automaton will not work with a multi-pebble automaton.

3.6 Tree-Walking Marble/Pebble Automata

There is one feature to be added to tree-walking marble automata to make sure that they have
the same power as binary MSO formulas with respect to describing binary node relations. A
tree-walking marble/pebble automaton has one pebble (next to marbles) which it can use in the
usual way. The only restriction is that the use of marbles and pebble together must be nested,
e.g., it is not allowed to put down a marble, then the pebble and then pick up the marble before
the pebble. Unlike the marbles, the pebble does not restrict the automaton to the subtree induced
by all descendants of the node where the pebble is. The pebble will be used to mark one special
node, e.g., the starting node of a walk on the tree. Like with tree-walking marble automata, we
will always assume that the automaton is constructed in such a way that there is not more than
one marble on any node, at any time.

Let Σ be a ranked alphabet and let Γ be an alphabet of marble colours. We define the set of
directives for a tree-walking marble/pebble automaton as

DTWMPA(Σ,Γ) = DTWMA(Σ,Γ) ∪ {put, lift, here,¬here}
= {↑i, ↓i| i ∈ rki(Σ)} ∪ {root,¬root} ∪ {labσ | σ ∈ Σ} ∪

{putγ , liftγ ,hereγ ,¬hereγ | γ ∈ Γ} ∪ {put, lift,here,¬here}

Here put, lift, here and ¬here (without subscripts) are the directives for the pebble, while putγ ,
liftγ , hereγ and ¬hereγ are the directives for a marble of colour γ. To enforce nesting, we now
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define the binary relations for the directives on triples (u, k, p) ∈ Vt × N × (N → MPt) with
MPt = (Vt × Γ) ∪ Vt ∪ {⊥}. Here an element m of MPt represents the action of putting down a
marble of colour γ on node u (m = (u, γ)) or of putting down the pebble on node u (m = u), or
no action (m = ⊥). Of a triple (u, k, p), u is the current node of the automaton, k is the number
of marbles and pebbles currently on the tree and p is the marble/pebble placement function.
Intuitively, p(1), . . . , p(k) are the actions executed in the past (in that order) of putting down
marbles or the pebble. The function p is used as a kind of push-down stack, putting another item
on the stack if a marble or pebble is put down and removing the topmost item from the stack if
a marble or pebble is lifted. At all times, p(n) = ⊥ if n > k.

For each tree t ∈ TΣ and each directive d ∈ DTWMPA(Σ,Γ) we define the following binary relations:

Rt(↑i) = {((u, k, p), (u′, k, p)) | u is the ith child of u′ and
p(j) 6= (u, γ) for all j ∈ [1, k], γ ∈ Γ}

Rt(↓i) = {((u, k, p), (u′, k, p)) | u′ is the ith child of u}
Rt(root) = {((roott, k, p), (roott, k, p))}

Rt(¬root) = {((u, k, p), (u, k, p)) | u 6= roott}
Rt(labσ) = {((u, k, p), (u, k, p)) | labt(u) = σ}
Rt(putγ) = {((u, k, p), (u, k + 1, p′)) | p′ = p(k + 1 7→ (u, γ)),

p(i) 6= (u, γ) for all i ∈ [1, k]}
Rt(liftγ) = {((u, k, p), (u, k − 1, p′)) | k ≥ 1, p(k) = (u, γ), p′ = p(k 7→ ⊥)}
Rt(hereγ) = {((u, k, p), (u, k, p)) | p(i) = (u, γ) for some i ∈ [1, k]}

Rt(¬hereγ) = {((u, k, p), (u, k, p)) | p(i) 6= (u, γ) for all i ∈ [1, k]}
Rt(put) = {((u, k, p), (u, k + 1, p′)) | k ≥ 0, p′ = p(k + 1 7→ u),

p(i) ∈ MPt \ Vt for all i ∈ [1, k]}
Rt(lift) = {((u, k, p), (u, k − 1, p′)) | k ≥ 1, p(k) = u, p′ = p(k 7→ ⊥)}
Rt(here) = {((u, k, p), (u, k, p)) | p(i) = u for some i ∈ [1, k]}

Rt(¬here) = {((u, k, p), (u, k, p)) | p(i) 6= u for all i ∈ [1, k]}

Let Σ be a ranked alphabet and let Γ be an alphabet. A tree-walking marble/pebble automaton
over (Σ,Γ) is a finite automaton over DTWMPA(Σ,Γ). We continue with the usual definitions.
For a tree-walking marble/pebble automaton A = (Q,DTWMPA(Σ,Γ), δ, I, F ) over (Σ,Γ) and
a tree t ∈ TΣ, the configurations of A are 4–tuples (q, u, k, p) ∈ Q × Vt × N × (N → MPt),
with q the state, u the current node, k the number of marbles and pebbles currently on the
tree and p the marble/pebble placement function. The set of all configurations of A and t is
denoted by CA,t. We define the binary step-relation �A,t on CA,t in the usual way. For every
(q, u, k, p), (q′, u′, k′, p′) ∈ CA,t,

(q, u, k, p)�A,t(q′, u′, k′, p′) iff ∃d ∈ DTWMPA(Σ,Γ) : (q, d, q′) ∈ δ and (u, k, p)Rt(d) (u′, k′, p′).

The automaton A computes on each tree t ∈ TΣ the binary relation

Rt(A) = {(u, u′) ∈ Vt × Vt | (qin, u, 0, p0)�∗A,t (qfin, u
′, 0, p0) for some qin ∈ I, qfin ∈ F},

where p0 is the empty marble/pebble placement function, with p0(i) = ⊥ for all i ∈ N. The node
relation that A computes is, as usual,

R(A) = {(t, u, v) | t ∈ TΣ and (u, v) ∈ Rt(A)}.

The tree language that A recognizes is, also as usual,

L(A) = {t ∈ TΣ | (t, roott, v) ∈ R(A) for some v ∈ Vt}.
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The class of all languages that are recognized by a tree-walking marble/pebble automaton is named
TWMPA. Transitions of the form (q, s, q′) with s ∈ DTWMPA(Σ,Γ)∗ are treated in the usual way.
The definition of deterministic tree-walking marble/pebble automata is equal to the definition
of deterministic string-walking automata. The following pairs of directives in DTWMPA(Σ,Γ)
are mutually exclusive, next to those pairs already mutually exclusive for tree-walking marble
automata:

• {put, lift}, {put, here} and {lift,¬here}

• {lift, liftγ} for any γ ∈ Γ (since either the pebble or a marble was put down last and hence
must be lifted first).

Theorem 20 TWMPA = REGT

Proof. Because TWMA=REGT (Theorem 19) and because each tree-walking marble automaton
is also a tree-walking marble/pebble automaton, it is sufficient to show that, for each tree-walking
marble/pebble automaton A, there exists a tree-walking marble automaton A′ such that L(A′) =
L(A).

Let A = (Q,DTWMPA(Σ,Γ), δ, I, F ) be a tree-walking marble/pebble automaton over (Σ,Γ). We
may again assume that A is constructed in such a way that, at any time, there is at most one
marble on any node. We also assume that A nevers puts the pebble on an empty tree, i.e., there
is always at least one marble on the tree when A puts down the pebble. This can easily be
accomplished by adding an extra marble colour and having A put one on the root before starting.
This also allows us to assume that A does not use the directives root and ¬root.

We first formulate and prove the following Claim. This Claim states that for a situation where
A just put down its pebble on the current node u and the previous marble (of colour γ) was put
on an ancestor v of u, there exists a finite tree automaton M such that A can make a round-trip,
starting and finishing at u, starting in state q and finishing in state q′, with the same marbles on
the tree at the beginning and at the end of the round-trip (and without lifting the pebble at u),
if and only if M accepts tv (the subtree of t with root v), marked at node u. Due to the nesting
constraints, the round-trip of A takes place only on tv (A cannot move higher up the tree than v
before lifting the marble at u).

Claim Let A = (Q,DTWMPA(Σ,Γ), δ, I, F ) be a tree-walking marble/pebble automaton over (Σ,Γ)
that does not make use of the directives put, lift, root, and ¬root. Then there exists for every γ ∈ Γ
and q, q′ ∈ Q a finite tree automaton M over Σ ∪ (Σ×B1) such that, for all t ∈ TΣ, u, v ∈ Vt,
k ≥ 2, p ∈ N→ MPt with p(k) = u and p(k − 1) = (v, γ), with u ∈ des(v) and the only marble on
tv is at v (i.e., ∀i < k: if p(i) = (v′, γ′) then v′ 6∈ des(v)),

(q, u, k, p)�∗A,t(q
′, u, k, p) iff mark(tv, u) ∈ L(M).

To prove this Claim, let A = (Q,DTWMPA(Σ,Γ), δ, I, F ) be a tree-walking marble/pebble au-
tomaton over (Σ,Γ) that does not make use of the directives put, lift, root, and ¬root, and let
γr ∈ Γ (the γ in the Claim) and q1, q2 ∈ Q. We first define a tree-walking marble automaton
A′ = (Q′, DTWMA(Σ ∪ (Σ×B1),Γ), δ′, I ′, F ′) over (Σ ∪ (Σ×B1),Γ) such that the Claim holds
for A′ rather than M . The automaton A′ uses the mark to know the position of the pebble. It
walks on tv; there is no marble of colour γr on v. A′ starts in the root of tv, i.e., v. It first searches
for the pebble, then simulates A, starting in state q1. When it gets back to the pebble in state q2,
A′’s mission is accomplished.

Q′ = Q ∪ {qin, qfin}
I ′ = {qin}
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F ′ = {qfin}
δ′ = {(qin, ↓i, qin) | i ∈ rki(Σ)} ∪ {(qin, lab(σ,1), q1) | σ ∈ Σ} ∪

{(p, d, q) | (p, d, q) ∈ δ, d 6∈ {here,¬here,¬hereγr , putγr}} ∪
{(p, lab(σ,1), q) | (p, labσ, q) ∈ δ} ∪
{(p, lab(σ,1), q) | (p, here, q) ∈ δ, σ ∈ Σ}} ∪
{(p, labσ, q) | (p,¬here, q) ∈ δ, σ ∈ Σ} ∪
{(p, root, q) | (p, hereγr , q) ∈ δ, σ ∈ Σ} ∪
{(p, (¬root,¬hereγr ), q) | (p,¬hereγr , q) ∈ δ} ∪
{(p, (¬root, putγr ), q) | (p, putγr , q) ∈ δ} ∪
{(q2, lab(σ,1), qfin) | σ ∈ Σ}

With this definition of A′, we have, for all t ∈ TΣ, u, v ∈ Vt, k ≥ 2, p ∈ N → MPt with p(k) = u
and p(k − 1) = (v, γ), with u ∈ des(v) and the only marble on tv at v,

(q1, u, k, p)�∗A,t(q2, u, k, p) iff mark(tv, u) ∈ L(A′).

Because TWMA=REGT (Theorem 19), there exists a finite tree automaton M over Σ ∪ (Σ×B1)
with L(M) = L(A′). The automaton M complies with the demands of the Claim. This ends the
proof of the Claim.

We continue with the proof of Theorem 20. We construct a tree-walking marble automaton A′

that recognizes the same tree language as the tree-walking marble/pebble automaton A. The
automaton A′ = (Q′, DTWMA(Σ,Γ′), δ′, I ′, F ′) simulates A, but at each step of A, A′ is prepared
to simulate the use of the pebble of A, by knowing, if it were to put the pebble at the current
node u, the states in which A could return at the same node, ready to pick up the pebble again
(cf. the proof of Theorem 11). To accomplish this, A′ uses a special set of marbles in addition to
the marbles of A. For each q, q′ ∈ Q and γ ∈ Γ, Mqq′γ is the automaton that can be constructed
according to the Claim, after removing all transitions with directives put and lift from A. The
meaning of the additional marble colours is as follows.

• The marbles γ̂ (for γ ∈ Γ) denote that the last marble that A has put down is of colour γ.
The special marble ε is used to indicate that there are no marbles of A on the tree.

• The marbles in the set “states” are strings of functions from Q × Q to Q. If the string is
f1 · · · fk (with k the rank of the symbol σ of the node), then fi(q, q′) = p means that Mqq′γ

reaches state p in the ith child of the node. Here γ is the colour of the latest marble put
down by A on the tree.

• The marbles q ∈ Q denote that A will continue its walk on the tree from there in state q.
They are used to store the state of A during the computation of the states-marble. They
also mark the node where this computation started.

• The marbles in the set “succ” are functions from Q×Q to subsets of Q. A marble coloured
g : Q × Q → 2Q on a node u indicates that, for all q, q′ ∈ Q, the finite automaton Mqq′γ

has successful states g(q, q′) at u. Here Mqq′γ works on the subtree tv, where v is the node
where the latest marble, of colour γ, was put by A.

A′ uses a method similar to the one used in Lemma 16 to compute the states of the Mqq′γ and
thus the marble colours for the marbles from the set “states”. The successful states of the Mqq′γ

for the children of a node u are computed by A′ from the successful states of u itself and from
the states that Mqq′γ reaches in the children of u. When A puts down its pebble (at node u), A′

checks whether Mqq′γ accepts mark(tv, u), where q is the state of A after it put down its pebble,
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q′ is a state from which A can pick it up again, γ is the colour of the last marble that A put down
before the pebble and v is the position of that marble. The colour γ is stored in the marble γ̂ at
the current node u. During the direct simulation of the steps of A, there is always exactly one
marble from the set {γ̂ | γ ∈ Γ} ∪ {ε} at the current node. When there is at least one marble of
A on the simulated tree, there is also exactly one marble from each of the sets states and succ at
the current node. The colours of these three marbles determine whether or not the Mqq′γ accept
mark(tv, u). We define the abbreviation ¬hereQ to be ¬hereq1 , . . . ,¬hereqn with {q1, . . . , qn} = Q.

Formally, the states, marble alphabet, initial and final states, and transitions of A′ are defined as
follows.

Q′ = Q ∪ {qin, qfin} ∪ {findstatesγ | γ ∈ Γ} ∪ {(f, γ) | f : (Q×Q)→ Q, γ ∈ Γ}
Γ′ = Γ ∪Q ∪ {γ̂ | γ ∈ Γ} ∪ {ε} ∪ states ∪ succ

states = {λ} ∪
⋃

i∈rki(Σ)

((Q×Q)→ Q)i

succ = (Q×Q)→ 2Q

I ′ = {qin}
F ′ = {qfin}
δ′ = δin ∪ δsim ∪ δstates ∪ δfin

The set of transitions δ′ of A′ is divided into four parts. The initialization of A′ is done in the
transitions in δin. The actual simulation of the steps of A is done by the transitions in δsim. The set
δstates contains a “subroutine” for calculating the states of Mq1q2γ for the children of the current
node in a marble from the set states. Finally, the cleaning up is done by the transitions in δfin.

We start with describing δin. From the initial state qin of A′, a marble ε is laid on the root. This
marble indicates that there is no marble on the (simulated) tree yet. This transition prepares the
automaton A′ for the simulation of A.

δin = {(qin, putε, q) | q ∈ I}

In δsim we place the transitions for the actual simulation of the steps of A. This is quite technical.
After simulating any of the directives {↓i, putγ , liftγ} the marble from states must be re-computed.
The marbles from succ are computed with the use of a function “su” that is defined after δsim. In
the last set of transitions, the putting down and lifting of the pebble is simulated, by making use
of the information in the marbles from states and succ.

δsim = {(p, (hereε, ↓i, putε, q) | (p, ↓i, q) ∈ δ} ∪
{(p, (labσ,hereγ̂ , heref1···fk , hereg, ↓i, putγ̂ , putg′ , putq,putλ),findstatesγ) | (p, ↓i, q) ∈ δ,

σ ∈ Σ, k = rk(σ), γ ∈ Γ, i ∈ [1, k], fj : Q×Q→ Q (j ∈ [1, k]),
g : Q×Q→ 2Q, g′ = su(g, σ, γ, i, f1, . . . , fk)} ∪

{(p, (liftε, ↑i), q) | (p, ↑i, q) ∈ δ} ∪
{(p, (¬hereΓ, liftγ̂ , liftg, liftf1···fk , ↑i), q) | (p, ↑i, q) ∈ δ,

γ ∈ Γ, g : Q×Q→ 2Q, k ≥ 0, fj : Q×Q→ Q (j ∈ [1, k])} ∪
{(p, labσ, q) | (p, labσ, q) ∈ δ} ∪
{(p, (putγ , liftε, putγ̂ ,putg, putq,putλ), findstatesγ) | (p, putγ , q) ∈ δ,

g : Q×Q→ 2Q with g(q1, q2) = FMq1q2γ
} ∪

{(p, (putγ , liftγ̂′ , putγ̂ , liftf1···fk , liftg, putg′ , putq,putλ), findstatesγ) | (p, putγ , q) ∈ δ,
γ′ ∈ Γ, k ≥ 0, fj : Q×Q→ Q (j ∈ [1, k]), g : Q×Q→ 2Q,
g′ : Q×Q→ 2Q with g′(q1, q2) = FMq1q2γ

} ∪
{(p, (liftγ , liftγ̂ , liftf1···fk , liftg, ↑i, hereε, ↓i, putε), q) | (p, liftγ , q) ∈ δ,
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k ≥ 0, fj : Q×Q→ Q (j ∈ [1, k]), g : Q×Q→ 2Q, i ∈ rki(Σ)} ∪
{(p, (liftγ , liftγ̂ , liftf1···fk , liftg, ↑i, hereγ̂′ , labσ, heref ′′1 ···f ′′k′′ , hereg′′ , ↓i,

putγ̂′ , putg′ , putq, putλ), findstatesγ′) | (p, liftγ , q) ∈ δ, k ≥ 0,

fj : Q×Q→ Q (j ∈ [1, k]), g : Q×Q→ 2Q, i ∈ rki(Σ), γ′ ∈ Γ, σ ∈ Σ,
k′′ = rk(σ), f ′′j : Q×Q→ Q (j ∈ [1, k′′]), g′′ : Q×Q→ 2Q,

g′ : Q×Q→ 2Q, g′ = su(g′′, σ, γ′, i, f ′′1 , · · · , f ′′k′′)} ∪
{(p, (root, liftγ , liftγ̂ , liftf1···fk , liftg,putε), q) | (p, liftγ , q) ∈ δ,

k ≥ 0, fj : Q×Q→ Q (j ∈ [1, k]), g : Q×Q→ 2Q} ∪
{(p, hereγ , q) | (p, hereγ , q) ∈ δ} ∪
{(p,¬hereγ , q) | (p,¬hereγ , q) ∈ δ} ∪
{(p, (labσ,heref1···fk ,hereg, hereγ̂), q) | (p, put, p′) ∈ δ, (q′, lift, q) ∈ δ,

σ ∈ Σ, k = rk(σ), γ ∈ Γ,
g : Q×Q→ 2Q, fj : Q×Q→ Q (j ∈ [1, k]),(
δ(σ,1)

)
Mp′q′γ

(f1(p′, q′), . . . , fk(p′, q′)) ∈ g(p′, q′)}

Here su(g, σ, γ, i, f1, . . . , fk) computes the next set of successful states. For all states q1, q2 ∈ Q,
su(g, σ, γ, i, f1, . . . , fk)(q1, q2) is the set of all states q such that Mq1q2γ is successful, assuming it
reaches the ith child of the current node in state q, and the jth (j 6= i) child of the current node
in state fj(q1, q2), or

su(g, σ, γ, i, f1, . . . , fk)(q1, q2) = {q ∈ QMq1q2γ
| (δσ)Mq1q2γ

(f1(q1, q2), . . . , fi−1(q1, q2), q,

fi+1(q1, q2), . . . , fk(q1, q2)) ∈ g(q1, q2)}.

The “subroutine” to construct the marble from states is as follows: δstates =
⋃
γ∈Γ δγ with

δγ = {(findstatesγ , (¬hereQ, labσ, liftλ, ↑i), (f, γ)) | i ∈ rki(Σ), rk(σ) = 0,
f : (Q×Q)→ Q with f(q1, q2) = (δσ)Mq1q2γ

} ∪
{(findstatesγ , (liftq, labσ), q) | rk(σ) = 0, q ∈ Q}
{(findstatesγ , (labσ, ↓1, putλ),findstatesγ) | rk(σ) > 0} ∪
{((fk, γ), (labσ, liftf1···fk−1 , putf1···fk , ↓k+1, putλ), findstatesγ) | 1 ≤ k < rk(σ)} ∪
{((fk, γ), (¬hereQ, labσ, liftf1···fk−1 , ↑i), (f, γ)) | k = rk(σ), i ∈ rki(Σ),

f(q1, q2) = (δσ)Mq1q2γ
(f1(q1, q2), . . . , fk(q1, q2))} ∪

{((fk, γ), (liftq, labσ, liftf1···fk−1 , putf1···fk), q) | q ∈ Q, k = rk(σ) ≥ 1}

Finally, to allow A′ to accept the tree, A′ has to remove its auxiliary pebbles from the tree. Since
at a moment that A would accept the tree there are no marbles on it, A′ only has to remove the
marbles ε.

δfin = {(q, liftε, qfin) | q ∈ F} ∪ {(qfin, (↑i, liftε), qfin) | i ∈ rki(Σ)}
�

3.7 Tree-Walking Automata with MSO Tests

A completely different extension (i.e., not involving marbles or pebbles) of tree-walking automata
is to add the capability to perform MSO tests (see [BE97], Section 1.4). Let Σ be a ranked
alphabet. The set of directives for a tree-walking automaton with MSO tests is

DTWA+M(Σ) = {↑i, ↓i| i ∈ rki(Σ)} ∪MSOL1(Σ).
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As this is an infinite set, we have to choose a finite subset of DTWA+M(Σ) for each tree-walking
automaton with MSO tests. For each tree t ∈ TΣ and each directive d ∈ DTWA+M(Σ) we define
the following binary relation on Vt:

Rt(↑i) = {(u, v) | (v, i, u) ∈ Et}
Rt(↓i) = {(u, v) | (u, i, v) ∈ Et}

Rt(ψ(x)) = {(u, u) | (t, u) |= ψ(x)}

A tree-walking automaton with MSO tests over Σ is a finite automaton A over a finite subset of
DTWA+M(Σ). The definitions of configurations,�A,t, Rt(A), R(A) and L(A) are unchanged. The
definition of deterministic tree-walking automata with MSO tests is also unchanged with respect
to the definition of deterministic tree-walking automata, although it is no longer possible to list all
pairs of mutually exclusive directives. However, it is decidable whether a given pair of directives
is mutually exclusive. Directives of the form (q, s, q′) with s ∈ DTWA+M(Σ)∗ are treated in the
usual way. The class of all tree languages L such that L = L(A) for some tree-walking automaton
with MSO tests A is named TWA+M. As stated in Section 1.4, in [BE97] the following is proven.

Proposition 21 The following three statements hold:

• TWA+M=REGT

• For each ranked alphabet Σ and each binary MSO formula φ(x, y) ∈ MSOL2(Σ), there exists
a tree-walking automaton with MSO tests A such that R(A) = R(φ).

• For each ranked alphabet Σ and each tree-walking automaton with MSO tests A over Σ, there
exists a binary MSO formula φ(x, y) ∈ MSOL2(Σ) such that R(φ) = R(A).

3.8 Equivalence of Binary MSO Formulas and
Tree-Walking Marble/Pebble Automata

In this section we will show that binary MSO formulas, i.e., formulas φ(x, y) ∈ MSOL2(Σ) for
some ranked alphabet Σ, define the same node relations as those computed by tree-walking mar-
ble/pebble automata. First we will show that for each binary formula φ(x, y) ∈ MSOL2(Σ) there
exists a tree-walking marble/pebble automaton A over (Σ,Γ) (for some alphabet Γ) such that
they compute the same relation, that is, R(φ) = R(A). We will make use of the second part of
Proposition 21 to construct our tree-walking marble/pebble automaton, similar to the alternate
proof of Theorem 7 (Section 1.6). Note that the original proof of Theorem 7 is not valid for
trees, because, if this proof were translated to trees, the pebble and marbles would not be used
nested. We need the following lemma. This lemma states that it is possible to simulate a unary
MSO formula with a tree-walking marble/pebble automaton that makes a round-trip, checking
the absence of all marbles and pebbles before entering a final state.

Lemma 22 Let Σ be a ranked alphabet. For each unary MSO formula ψ(x) ∈ MSOL1(Σ) there
exists a tree-walking marble/pebble automaton A = (Q,DTWMPA(Σ,Γ), δ, I, F ) over (Σ,Γ), for
some alphabet Γ, such that, for all t ∈ TΣ, Rt(A) = {(u, u) | u ∈ Vt, (t, u) |= ψ(x)} and, if
(qin, u, 0, p0)�∗A,t(qfin, u

′, k, p) for some u, u′ ∈ Vt, qin ∈ I and qfin ∈ F , then k = 0 and p = p0.

Proof. Let Σ be a ranked alphabet and let ψ(x) ∈ MSOL1(Σ) be a unary MSO formula. According
to Corollary 3, there exists a closed MSO formula ψ′ ∈ MSOL0(Σ ∪ (Σ×B1)) such that, for all
t ∈ TΣ and u ∈ Vt, (t, u) |= ψ(x) iff mark(t, u) |= ψ′. Since MSOT=REGT (Proposition 15) and
TWMA=REGT (Theorem 19), there exists a tree-walking marble automaton

A′ = (Q′, DTWMA(Σ ∪ (Σ×B1),Γ), δ′, I ′, F ′)
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over (Σ ∪ (Σ×B1),Γ) (for some alphabet Γ) such that L(A′) = L(ψ′). This implies that for all
t ∈ TΣ, u ∈ Vt and t′ = mark(t, u),

t′ |= ψ′ iff (qin, roott′ ,m0)�∗A′,t′(qfin, v,m0) for some qin ∈ I ′, qfin ∈ F ′ and v ∈ Vt.

We now define the tree-walking marble/pebble automaton A = (Q,DTWMPA(Σ,Γ), δ, I, F ). This
automaton first drops its pebble in order to remember the start of the walk. Then it walks to the
root of the tree and starts simulating A′. It uses the pebble to determine when to interpret a node
label σ ∈ Σ as σ (when there is no pebble at the current node) and when to interpret σ as (σ, 1)
(when there is a pebble at the current node). When it reaches a final state, it walks to the root
of the tree, checking on the way that there are no marbles (this can be done since the marbles
always lie on the path from the root to the current node), so that A′ really accepts the marked
tree. Then A searches for the pebble, picks it up and finishes.

Q = Q′ ∪ {qin, toroot, ready, findpebble, qfin}
I = {qin}
F = {qfin}
δ = {(qin,put, toroot)} ∪ {(toroot, ↑i, toroot) | i ∈ rki(Σ)} ∪

{(toroot, root, q) | q ∈ I ′} ∪
{(q, d, q′) | (q, d, q′) ∈ δ′, d 6= labσ for all σ ∈ Σ} ∪
{(q, (¬here, labσ), q′) | (q, labσ, q′) ∈ δ′} ∪
{(q, (here, labσ), q′) | (q, lab(σ,1), q

′) ∈ δ′} ∪
{(q,¬hereΓ, ready) | q ∈ F ′} ∪
{(ready, (↑i,¬hereΓ), ready) | i ∈ rki(Σ)} ∪
{(ready, (root,¬hereΓ),findpebble)} ∪
{(findpebble, (¬here, ↓i), findpebble) | i ∈ rki(Σ)} ∪
{(findpebble, (here, lift), qfin)}

Note that the construction of A ensures that the marbles and pebble are used nested, because first
the pebble is put down, then the marbles are used in the same way as A′ uses them (i.e., nested),
then A makes sure there are no marbles left on the tree and finally A picks up the pebble.

From the construction of A it follows that, for all t ∈ TΣ, u ∈ Vt and t′ = mark(t, u),

(q, roott′ ,m0)�∗A′,t′(q
′, v,m0) for some q ∈ I ′, q′ ∈ F ′ and v ∈ Vt iff

(qin, u, 0, p0)�∗A,t(qfin, u, 0, p0).

This, and the details of the construction of A, implies Rt(A) = {(u, u) | u ∈ Vt, (t, u) |= ψ(x)} and
the other details of the lemma. �

Lemma 23 Let Σ be a ranked alphabet and let φ(x, y) ∈ MSOL2(Σ) be a binary MSO formula.
Then there exists a tree-walking marble/pebble automaton A such that R(A) = R(φ).

Proof. According to Proposition 21, there exists a tree-walking automaton with MSO tests
A′ = (Q′,∆, δ′, I ′, F ′) such that R(A′) = R(φ). We define a tree-walking marble/pebble au-
tomaton A over (Σ,Γ) that simulates A′. The automaton A can directly simulate the directives
{↑i, ↓i| i ∈ rki(Σ)}. The directives ψ(x) ∈ MSOL1(Σ) are handled by constructing a tree-walking
marble/pebble automaton according to Lemma 22 and using this automaton as a “subroutine”
in A. We define T = {(q, d, q′) ∈ δ′ | d ∈ MSOL1(Σ)}, the set of all transitions with MSO tests
in A′. For each transition τ = (q, ψ(x), q′) ∈ T , we use Lemma 22 to construct the tree-walking
marble/pebble automaton Aτ over (Σ,Γτ ) that simulates τ . We will assume that the states of
any automaton Aτ do not overlap with the states of any other Aτ or with the states of A′. We
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also assume that the marble alphabets Γτ are disjoint, or Γτ ∩ Γτ ′ = ∅ for all τ, τ ′ ∈ T , τ 6= τ ′.
The marble alphabet of A is Γ =

⋃
τ∈T Γτ .

We define A = (Q,DTWMPA(Σ,Γ), δ, I, F ) as follows:

Q = Q′ ∪
⋃
τ∈T

QAτ

I = I ′

F = F ′

δ = {τ ∈ δ′ | τ 6∈ T} ∪
{(q, (put, lift), q′), (q′′, (put, lift), q′′′) | q′ ∈ IAτ , q′′ ∈ FAτ , τ = (q, ψ(x), q′′′) ∈ T} ∪⋃
τ∈T

δAτ

Here the (double) directive (put, lift) acts as a “nop” directive. It can easily be seen that A
complies with the demands of nesting and that R(A) = R(A′). �

We now show the other way around.

Lemma 24 Let Σ be a ranked alphabet and let A be a tree-walking marble/pebble automaton over
(Σ,Γ). Then there exists a binary MSO formula φ(x, y) ∈ MSOL2(Σ) such that R(φ) = R(A).

Proof. From the automaton A we first construct another tree-walking marble/pebble automaton
A′ over (Σ ∪ (Σ×B2),Γ) such that, for all t ∈ TΣ and u, v ∈ Vt,

mark(t, u, v) ∈ L(A′) iff (t, u, v) ∈ R(A).

A′ first finds the node with label (σ, 1, b), simulates A and accepts the tree if A has a final
state in a node with label (σ, b, 1). Because TWMPA=REGT (Theorem 20) and REGT=MSOT
(Proposition 15), there exists a MSO formula ψ ∈ MSOL0(Σ ∪ (Σ×B2)) such that, for all t′ ∈
TΣ ∪ (Σ×B2),

t′ ∈ L(ψ) iff t′ ∈ L(A′).

Now, using Corollary 3, we obtain a binary MSO formula φ(x, y) ∈ MSOL2(Σ) such that, for all
t ∈ TΣ and u, v ∈ Vt,

(t, u, v) ∈ R(φ) iff mark(t, u, v) ∈ L(ψ)

and we have, for all t ∈ TΣ and u, v ∈ Vt,

(t, u, v) ∈ R(φ) iff (t, u, v) ∈ R(A).

�

These two lemmas together prove the grand finale of this chapter.

Theorem 25 The following two statements hold:

• For every MSO formula φ(x, y) ∈ MSOL2(Σ) there exists a tree-walking marble/pebble au-
tomaton A over (Σ,Γ), for some alphabet Γ, such that R(A) = R(φ).

• For every tree-walking marble/pebble automaton A over (Σ,Γ) there exists an MSO formula
φ(x, y) ∈ MSOL2(Σ) such that R(φ) = R(A).

This theorem states that binary MSO formulas define the same node relations that tree-walking
marble/pebble automata compute. Since the proof of this theorem, and all underlying theorems
and lemmas, is constructive, we can actually construct an operational automaton with only local
operations to compute the node relation that is defined by a given, descriptive, binary MSO
formula, and vice versa.

43



Conclusion and Recommendations

Conclusion

In this paper we have described a number of string-walking and tree-walking automata and we
have proved some of their properties, especially with regard to the binary node relations these
automata compute. This study has been done in order to find an answer to the following question:

Is it possible to define a type of tree-walking automaton, with only local operations,
that computes the same binary node relations that binary MSO formulas recognize?

In Chapter 1 we have investigated the possibilities to define a string-walking automaton that
computes the same binary relations on the positions of strings as binary MSO formulas. It was
found that string-walking pebble automata have this property. It is even possible, for every
binary MSO formula, to construct a string-walking pebble automaton that computes the same
binary relation. The reverse is also true: for each string-walking pebble automaton, it is possible
to construct a binary MSO formula that defines the same binary relation. It was also shown
that the pebble is necessary. There is a binary MSO formula for which there is no string-walking
automaton (without pebble) that computes the same binary relation. Since the pebble operations
are local (the pebble can only be handled on the current position of the automaton), this answers
our central question for strings.

To answer our central question for trees, we have defined in Chapter 3, among others, tree-walking
pebble/marble automata. It has been shown that these automata compute exactly the binary node
relations that can be defined by binary MSO formulas. Like with string-walking pebble automata,
the appropriate automaton for each binary MSO formula can be constructed, and vice versa.
Tree-walking marble/pebble automata have also only local operations. All pebble-handling and
marble-handling occurs only on the current node. A note must be made that it may seem a bit
complicated to have both marbles and a pebble available to the automaton. We have made no
study to check whether it is possible to leave out, e.g., the pebble and still compute the same
binary node relations. Also one might argue that the tree-walking marble/pebble automaton is
not strictly local, since the automaton “remembers” in some way that it has dropped the pebble,
further down the tree, when it is about to pick up the marble that was put down last before the
pebble.
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Recommendations

There are a number of questions that have not been answered in this paper, but may be interesting
for future study.

• Only binary node relations have been considered. Maybe there is also an operational way
to compute the k-ary node relations that are defined by k-ary MSO formulas.

• The concept of string-walking marble automata (Section 1.4) may have to be adapted to
make them recognize exactly the regular languages.

• Do tree-walking automata recognize exactly the regular tree languages?

• It has not been checked that tree-walking marble/pebble automata need the pebble to com-
pute the relations defined by binary MSO formulas.

• Tree-walking multi-pebble automata (in analogy with string-walking multi-pebble automata)
have not been studied. It is not known which tree languages they describe, and whether the
number of pebbles induces a hierarchy on the recognized languages. It is known that tree-
walking multi-pebble automata recognize at most the regular tree languages, or TWnPA ⊆
REGT.

• It should be checked whether deterministic string-walking pebble automata recognize exactly
the functional relations that are defined by binary MSO formulas. Also for deterministic
tree-walking marble/pebble automata and (functional) binary MSO formulas.
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